The goal of this stydy was to explore the potential of the enhanced corrosion resistance of Ti(N,O) cathodic arc evaporation-coated 304L stainless steel using oxide nano-layers deposited by atomic layer deposition (ALD). In this study, we deposited AlO, ZrO, and HfO nanolayers of two different thicknesses by ALD onto Ti(N,O)-coated 304L stainless steel surfaces. XRD, EDS, SEM, surface profilometry, and voltammetry investigations of the anticorrosion properties of the coated samples are reported.
View Article and Find Full Text PDFIn this paper, cellulose nanocrystals (CNCs) were isolated from the cellulose extracted from cocoa pod husk waste, followed by characterization using XRD, FT-IR, TGA, SEM and TEM to determine its crystallinity, structural properties, thermal characteristics, morphology and dimensions respectively. The result revealed that the cocoa pod husk amorphous segments containing hemicelluloses and lignin were extensively removed with increasing chemical treatments leading to increased purity, crystallinity index and thermal stability of the extracted materials. The diameter, length and crystallinity index of the CNC isolated from the CPH are 10-60 nm, 41-155 nm and 67.
View Article and Find Full Text PDFThis study reports on formulations and conditions for producing fly ash-based geopolymers with a view to showing that the compressive strength required for construction applications can be obtained without the addition of aggregates, sand, and/or cement. It was shown in a series of experiments constituting at least 73% fly ash that a compressive strength of up to 90 MPa can be obtained depending on the curing conditions. While high alkalinity resulted in stronger materials, the results showed about 40% savings in CO emissions without using sand and cement.
View Article and Find Full Text PDFThe development of durable photocatalytic supports resistant in harsh environment has become challenging in advanced oxidation processes (AOPs) focusing on water and wastewater remediation. In this study, stainless steel (SS), SS/Ti (N,O) and SS/Cr-N/Cr (N,O) anticorrosion layers on SS meshes were dip-coated with sol gel synthesised C-N-TiO photo catalysts pyrolysed at 350 °C for 105 min, using a heating rate of 50 °C/min under N gas. The supported C-N-TiO films were characterised by scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and Raman spectroscopy.
View Article and Find Full Text PDF