Publications by authors named "Leslie Calapre"

Article Synopsis
  • Immune checkpoint inhibitors (ICIs) have improved outcomes for melanoma patients but can cause severe side effects, making it hard to decide if treatment should resume after these reactions.
  • This study analyzed blood samples from 34 melanoma patients who experienced serious treatment-related side effects to see if measuring circulating tumor DNA (ctDNA) could help guide treatment decisions.
  • Results showed that patients with detectable ctDNA at the time of treatment cessation had shorter progression-free and overall survival rates compared to those with undetectable ctDNA, suggesting ctDNA levels can indicate ongoing disease risk and help in clinical decision-making.
View Article and Find Full Text PDF
Article Synopsis
  • Around 50% of uveal melanoma patients may experience metastatic disease, necessitating costly and non-specific monthly scans; ctDNA could provide a more effective monitoring solution.
  • The study used droplet-digital PCR to analyze ctDNA in three cohorts: predicting metastases in primary patients, early detection in resolved cases, and treatment response in metastatic patients.
  • Results showed ctDNA was not helpful in predicting metastases in primary patients, but it was a strong survival predictor and showed reduced levels in patients receiving effective immunotherapy.
View Article and Find Full Text PDF

Circulating tumour cells (CTCs) are heterogenous and contain genetic information from the tumour of origin. They bear specific intra- and extra-cellular protein markers aiding in their detection. However, since these markers may be shared with other rare cells in the blood, only genetic testing can confirm their malignancy.

View Article and Find Full Text PDF

Plasma circulating tumour DNA (ctDNA) has been suggested to be a viable biomarker of response to treatment in patients with high grade serous ovarian carcinoma (HGSOC). TP53 mutations are present in more than 90% of HGSOCs but somatic variants are distributed across all exonic regions of the gene, requiring next generation sequencing (NGS) technologies for mutational analysis. In this study, we compared the suitability of the Accel (Swift) and Oncomine (ThermoFisher) panels for identification of TP53 mutations in ctDNA of HGSOC patients (N = 10).

View Article and Find Full Text PDF

Introduction: Biomarkers that predict the risk of immune-mediated adverse events (irAEs) among patients with non-small cell lung cancer (NSCLC) may reduce morbidity and mortality associated with these treatments.

Methods: We carried out high resolution human leucocyte antigen (HLA)-I typing on 179 patients with NSCLC treated with anti-program death (PD)-1/program death ligand (PDL)-1. Toxicity data were collected and graded as per common terminology criteria for adverse event (CTCAE) v5.

View Article and Find Full Text PDF

Detection of ovarian cancer (OC) circulating tumour cells (CTCs) is primarily based on targeting epithelial markers, thus failing to detect mesenchymal tumour cells. More importantly, the immune checkpoint inhibitor marker PD-L1 has not been demonstrated on CTCs from OC patients. An antibody staining protocol was developed and tested using SKOV-3 and OVCA432 OC cell lines.

View Article and Find Full Text PDF

Aims: Glioneuronal tumours, although rare, are an important cause of treatment-resistant epilepsy. Differential diagnosis of glioneuronal tumour subtypes is complicated by their variable histological appearance and the lack of pathognomonic histological or molecular biomarkers. In this study we have applied techniques available in a diagnostic laboratory setting to characterise molecular and cytogenetic abnormalities in a single institution cohort of glioneuronal tumours.

View Article and Find Full Text PDF

(1) Background: The stratification of uveal melanoma (UM) patients into prognostic groups is critical for patient management and for directing patients towards clinical trials. Current classification is based on clinicopathological and molecular features of the tumour. Analysis of circulating tumour cells (CTCs) has been proposed as a tool to avoid invasive biopsy of the primary tumour.

View Article and Find Full Text PDF

Tumor heterogeneity is a major obstacle to the success of cancer treatment. An accurate understanding and recognition of tumor heterogeneity is critical in the clinical management of cancer patients. Here, we utilized single-cell RNA sequencing (scRNA-seq) to uncover the intra- and intertumoral heterogeneity of liver metastases from a patient with metastatic uveal melanoma.

View Article and Find Full Text PDF

Background: The validity of circulating tumour DNA (ctDNA) as an indicator of disease progression compared to medical imaging in patients with metastatic melanoma requires detailed evaluation.

Methods: Here, we carried out a retrospective ctDNA analysis of 108 plasma samples collected at the time of disease progression. We also analysed a validation cohort of 66 metastatic melanoma patients monitored prospectively after response to systemic therapy.

View Article and Find Full Text PDF

In recent years, circulating tumor DNA (ctDNA) has emerged as a promising prognostic and monitoring biomarker of various cancers, including melanoma. However, sensitive methods are required for its preservation, isolation, and detection. Here we describe a sensitive method for plasma ctDNA isolation using a column-based extraction kit, followed by quantification using a single mutational target with a droplet digital PCR system.

View Article and Find Full Text PDF

Cancer metastasis is the main reason for the high mortality in patients, contributing to 90% of cancer-related deaths. Biomarkers for early detection and therapeutic monitoring are essential to improve cancer outcomes. Circulating tumour cells (CTCs) arise from solid tumours and are capable of metastatic dissemination via the bloodstream or lymphatic system.

View Article and Find Full Text PDF

Purpose: We examined changes in plasma creatine kinase (CK) activity, hydroxyproline and cell-free DNA (cfDNA) concentrations in relation to changes in maximum voluntary isometric contraction (MVIC) torque and delayed-onset muscle soreness (DOMS) following a session of volume-matched higher- (HI) versus lower-intensity (LI) eccentric cycling exercise.

Methods: Healthy young men performed either 5 × 1-min HI at 20% of peak power output (n = 11) or 5 × 4-min LI eccentric cycling at 5% of peak power output (n = 9). Changes in knee extensor MVIC torque, DOMS, plasma CK activity, and hydroxyproline and cfDNA concentrations before, immediately after, and 24-72 h post-exercise were compared between groups.

View Article and Find Full Text PDF

In this study, we evaluated the predictive value of circulating tumour DNA (ctDNA) to inform therapeutic outcomes in metastatic melanoma patients receiving systemic therapies. We analysed 142 plasma samples from metastatic melanoma patients prior to commencement of systemic therapy: 70 were treated with BRAF/MEK inhibitors and 72 with immunotherapies. Patient-specific droplet digital polymerase chain reaction assays were designed for ctDNA detection.

View Article and Find Full Text PDF

Immunotherapy is an important and established treatment option for patients with advanced melanoma. Initial anti-PD1 trials arbitrarily defined a two-year treatment duration, but a shorter treatment duration may be appropriate. In this study, we retrospectively assessed 70 patients who stopped anti-PD1 therapy in the absence of progressive disease (PD) to determine clinical outcomes.

View Article and Find Full Text PDF

Background: We aimed to assess the impact of genomic human leukocyte antigen (HLA)-I/II homozygosity on the survival benefit of patients with unresectable locally advanced, metastatic non-small lung cancer treated by single-agent programmed cell death protein-1/programmed death ligand 1 (PD1/PDL1) inhibitors.

Methods: We collected blood from 170 patients with advanced lung cancer treated with immunotherapy at two major oncology centers in Western Australia. Genomic DNA was extracted from white blood cells and used for HLA-I/II high-resolution typing.

View Article and Find Full Text PDF

The analysis of plasma circulating tumour nucleic acids provides a non-invasive approach to assess disease burden and the genetic evolution of tumours in response to therapy. splicing variants are known to confer melanoma resistance to BRAF inhibitors. We developed a test to screen cell-free RNA (cfRNA) for the presence of splicing variants.

View Article and Find Full Text PDF

Purpose: We evaluated the predictive value of pretreatment ctDNA to inform therapeutic outcomes in patients with metastatic melanoma relative to type and line of treatment.

Experimental Design: Plasma circulating tumor DNA (ctDNA) was quantified in 125 samples collected from 110 patients prior to commencing treatment with immune checkpoint inhibitors (ICIs), as first- ( = 32) or second-line ( = 27) regimens, or prior to commencing first-line BRAF/MEK inhibitor therapy ( = 66). An external validation cohort included 128 patients commencing ICI therapies in the first- ( = 77) or second-line ( = 51) settings.

View Article and Find Full Text PDF

Background: Circulating tumour cells (CTCs) can be assessed through a minimally invasive blood sample with potential utility as a predictive, prognostic and pharmacodynamic biomarker. The large heterogeneity of melanoma CTCs has hindered their detection and clinical application.

Methods: Here we compared two microfluidic devices for the recovery of circulating melanoma cells.

View Article and Find Full Text PDF

Analysis of specific somatic copy number alterations (SCNAs) using multiplex ligation-dependent probe amplification (MLPA) is used routinely as a prognostic test for uveal melanoma (UM). This technique requires relatively large amounts of input DNA, unattainable from many small fine-needle aspirate biopsy specimens. Herein, we compared the use of MLPA with whole-genome amplification (WGA) combined with low-pass whole-genome sequencing (LP-WGS) for detection of SCNA profiles in UM biopsy specimens.

View Article and Find Full Text PDF

Background: Circulating tumour DNA (ctDNA) has emerged as a promising blood-based biomarker for monitoring disease status of patients with advanced cancers. The presence of ctDNA in the blood is a result of biological processes, namely tumour cell apoptosis and/or necrosis, and can be used to monitor different cancers by targeting cancer-specific mutation.

Case Presentation: We present the case of a 67 year old Caucasian male that was initially treated with BRAF inhibitors followed by anti-CTLA4 and then anti-PD1 immunotherapy for metastatic melanoma but later developed colorectal cancer.

View Article and Find Full Text PDF

Liquid biopsies hold the potential to inform cancer patient prognosis and to guide treatment decisions at the time when direct tumor biopsy may be impractical due to its invasive nature, inaccessibility and associated complications. Specifically, circulating tumor DNA (ctDNA) and circulating tumor cells (CTCs) have shown promising results as companion diagnostic biomarkers for screening, prognostication and/or patient surveillance in many cancer types. In ovarian cancer (OC), CTC and ctDNA analysis allow comprehensive molecular profiling of the primary, metastatic and recurrent tumors.

View Article and Find Full Text PDF

The analysis of circulating tumor DNA provides a minimally invasive molecular interrogation that has the potential to guide treatment selection and disease monitoring. Here, the authors evaluated a custom UltraSEEK melanoma panel for the MassARRAY system, probing for 61 mutations over 13 genes. The analytical sensitivity and clinical accuracy of the UltraSEEK melanoma panel was compared with droplet digital PCR.

View Article and Find Full Text PDF

Circulating tumor DNA (ctDNA) may serve as a surrogate to tissue biopsy for noninvasive identification of mutations across multiple genetic loci and for disease monitoring in melanoma. In this study, we compared the mutation profiles of tumor biopsies and plasma ctDNA from metastatic melanoma patients using custom sequencing panels targeting 30 melanoma-associated genes. Somatic mutations were identified in 20 of 24 melanoma biopsies, and 16 of 20 (70%) matched-patient plasmas had detectable ctDNA.

View Article and Find Full Text PDF

Background: Circulating tumour DNA (ctDNA) may serve as a measure of tumour burden and a useful tool for non-invasive monitoring of cancer. However, ctDNA is not always detectable in patients at time of diagnosis of metastatic disease. Therefore, there is a need to understand the correlation between ctDNA levels and the patients' overall metabolic tumour burden (MTB).

View Article and Find Full Text PDF