Tamoxifen is a widely used breast cancer therapeutic and preventative agent. Although functioning as an estrogen antagonist at the cellular level, transcriptional profiling revealed that at the molecular level, tamoxifen functions largely as an agonist, virtually recapitulating the gene expression profile induced in breast cancer cells by estrogen. Remarkably, tamoxifen induces transcription factors and genes involved in promoting cell cycle progression including fos, myc, myb, cdc25a, cyclins E and A2, and stk15 with kinetics that paralleled that of cells cycling in response to estrogen, even though tamoxifen-treated cells are not transiting through the cell cycle.
View Article and Find Full Text PDFUterine leiomyomas develop in reproductive-age women with high frequency and are dependent on the production of ovarian hormones. While it is generally accepted that these tumors are estrogen (E(2))-responsive, the role of progesterone (P(4)) in modulating tumor growth is less clear. In the present study, an in vivo/in vitro rat model was used to characterize progesterone receptor (PR) isoform expression in uterine leiomyoma and investigate PR signaling using progestins and antiprogestins in the leiomyoma-derived cell line ELT-3.
View Article and Find Full Text PDF