Publications by authors named "Leslie Baxter"

The Program for the Education and Enrichment of Relational Skills (PEERS) is an evidence-based intervention developed for autistic individuals to support social communication, peer interactions, independence, and interpersonal relationships. Despite a demonstrated effectiveness for young autistic individuals in the US and several other countries, PEERS has yet to be modified to support the needs of autistic adults across the lifespan. The present study describes how our team sought autistic voices to adapt PEERS for adults of any age.

View Article and Find Full Text PDF
Article Synopsis
  • Glioblastoma (GBM) is a highly aggressive cancer characterized by genetic variability within tumors, making it difficult to treat effectively; this study aimed to develop a non-invasive MRI-based machine learning model to analyze this genetic heterogeneity.
  • The research introduced a Weakly Supervised Ordinal Support Vector Machine (WSO-SVM) model, trained on data from 74 patients, to predict alterations in key GBM genes using MRI images, achieving higher accuracy than existing algorithms.
  • Results showed the WSO-SVM model to be effective, with accuracies of 80% for the EGFR gene and comparable results for others; the analysis also highlighted different contributions of MRI images, providing valuable insights into tumor genetics for better treatment planning
View Article and Find Full Text PDF

Introduction: Cognitive impairment (CI) due to Alzheimer's disease (AD) encompasses a decline in cognitive abilities and can significantly impact an individual's quality of life. Early detection and intervention are crucial in managing CI, both in the preclinical and prodromal stages of AD prior to dementia.

Methods: In this preliminary study, we investigated differences in resting-state functional connectivity and dynamic network properties between 23 individual with CI due to AD based on clinical assessment and 15 healthy controls (HC) using Independent Component Analysis (ICA) and Dominant-Coactivation Pattern (d-CAP) analysis.

View Article and Find Full Text PDF

Brain cancers pose a novel set of difficulties due to the limited accessibility of human brain tumor tissue. For this reason, clinical decision-making relies heavily on MR imaging interpretation, yet the mapping between MRI features and underlying biology remains ambiguous. Standard (clinical) tissue sampling fails to capture the full heterogeneity of the disease.

View Article and Find Full Text PDF

Sampling restrictions have hindered the comprehensive study of invasive non-enhancing (NE) high-grade glioma (HGG) cell populations driving tumor progression. Here, we present an integrated multi-omic analysis of spatially matched molecular and multi-parametric magnetic resonance imaging (MRI) profiling across 313 multi-regional tumor biopsies, including 111 from the NE, across 68 HGG patients. Whole exome and RNA sequencing uncover unique genomic alterations to unresectable invasive NE tumor, including subclonal events, which inform genomic models predictive of geographic evolution.

View Article and Find Full Text PDF

Background: Glioblastoma is an extraordinarily heterogeneous tumor, yet the current treatment paradigm is a "one size fits all" approach. Hundreds of glioblastoma clinical trials have been deemed failures because they did not extend median survival, but these cohorts are comprised of patients with diverse tumors. Current methods of assessing treatment efficacy fail to fully account for this heterogeneity.

View Article and Find Full Text PDF

Introduction: Resting-state functional magnetic resonance imaging (fMRI) graph theory may help detect subtle functional connectivity changes affecting memory prior to impairment.

Methods: Cognitively normal apolipoprotein E (APOE) ε4 carriers/noncarriers underwent longitudinal cognitive assessment and one-time MRI. The relationship of left/right hippocampal connectivity and memory trajectory were compared between carriers/noncarriers.

View Article and Find Full Text PDF

Background: Advanced diffusion-based MRI biomarkers may provide insight into microstructural and perfusion changes associated with neurodegeneration and cognitive decline.

Purpose: To assess longitudinal microstructural and perfusion changes using apparent diffusion coefficient (ADC) and intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) parameters in cognitively impaired (CI) and healthy control (HC) groups.

Study Type: Prospective/longitudinal.

View Article and Find Full Text PDF

The male preponderance in autism spectrum disorder (ASD) led to the hypothesis that aspects of female biology are protective against ASD. Females with ASD (ASD-F) report more compensatory behaviors (i.e.

View Article and Find Full Text PDF

Background: Imaging biomarkers are increasingly used in Alzheimer's disease (AD), and the identification of sex differences using neuroimaging may provide insight into disease heterogeneity, progression, and therapeutic targets.

Objective: The purpose of this study was to investigate differences in grey matter (GM) volume and white matter (WM) microstructural disorganization between males and females with AD using voxel-based morphometry (VBM) and free-water-corrected diffusion tensor imaging (FW-DTI).

Methods: Data were downloaded from the OASIS-3 database, including 158 healthy control (HC; 86 females) and 46 mild AD subjects (24 females).

View Article and Find Full Text PDF

Relative cerebral blood volume (rCBV) obtained from dynamic susceptibility contrast (DSC) MRI is adversely impacted by contrast agent leakage in brain tumors. Using simulations, we previously demonstrated that multi-echo DSC-MRI protocols provide improvements in contrast agent dosing, pulse sequence flexibility, and rCBV accuracy. The purpose of this study is to assess the performance of dual-echo acquisitions in patients with brain tumors (n = 59).

View Article and Find Full Text PDF

Older adults often experience difficulties comprehending speech in noisy backgrounds, which hearing loss does not fully explain. It remains unknown how cognitive abilities, brain networks, and age-related hearing loss may uniquely contribute to speech in noise comprehension at the sentence level. In 31 older adults, using cognitive measures and resting-state fMRI, we investigated the cognitive and neural predictors of speech comprehension with energetic (broadband noise) and informational masking (multi-speakers) effects.

View Article and Find Full Text PDF

Radiogenomics uses machine-learning (ML) to directly connect the morphologic and physiological appearance of tumors on clinical imaging with underlying genomic features. Despite extensive growth in the area of radiogenomics across many cancers, and its potential role in advancing clinical decision making, no published studies have directly addressed uncertainty in these model predictions. We developed a radiogenomics ML model to quantify uncertainty using transductive Gaussian Processes (GP) and a unique dataset of 95 image-localized biopsies with spatially matched MRI from 25 untreated Glioblastoma (GBM) patients.

View Article and Find Full Text PDF

Ventricular volume (VV) is a widely used structural magnetic resonance imaging (MRI) biomarker in Alzheimer's disease (AD) research. Abnormal enlargements of VV can be detected before clinically significant memory decline. However, VV does not pinpoint the details of subregional ventricular expansions.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disease that affects aging populations. Current MRI techniques are often limited in their sensitivity to underlying neuropathological changes.

Purpose: To characterize differences in voxel-based morphometry (VBM), apparent diffusion coefficient (ADC), and intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) metrics in aging populations.

View Article and Find Full Text PDF

Background: The integrity and connectivity of the frontal lobe, which subserves fluency, may be compromised by both ASD and aging. Alternate networks often integrate to help compensate for compromised functions during aging. We used network analyses to study how compensation may overcome age-related compromised in individuals with ASD.

View Article and Find Full Text PDF

Background: Research suggests adults with autism spectrum disorder (ASD) may use executive functions to compensate for social difficulties. Given hallmark age-related declines in executive functioning and the executive brain network in normal aging, there is concern that older adults with ASD may experience further declines in social functioning as they age. In a male-only sample, we hypothesized: 1) older adults with ASD would demonstrate greater ASD-related social behavior than young adults with ASD, 2) adults with ASD would demonstrate a greater age group reduction in connectivity of the executive brain network than neurotypical (NT) adults, and 3) that behavioral and neural mechanisms of executive functioning would predict ASD-related social difficulties in adults with ASD.

View Article and Find Full Text PDF

Fourteen single-sided deaf listeners fit with an MED-EL cochlear implant (CI) judged the similarity of clean signals presented to their CI and modified signals presented to their normal-hearing ear. The signals to the normal-hearing ear were created by (a) filtering, (b) spectral smearing, (c) changing overall fundamental frequency (F0), (d) F0 contour flattening, (e) changing formant frequencies, (f) altering resonances and ring times to create a metallic sound quality, (g) using a noise vocoder, or (h) using a sine vocoder. The operations could be used singly or in any combination.

View Article and Find Full Text PDF

Non-canonical sentence comprehension impairments are well-documented in aphasia. Studies of neurotypical controls indicate that prosody can aid comprehension by facilitating attention towards critical pitch inflections and phrase boundaries. However, no studies have examined how prosody may engage specific cognitive and neural resources during non-canonical sentence comprehension in persons with left hemisphere damage.

View Article and Find Full Text PDF

Introduction: Auditory attention is a critical foundation for successful language comprehension, yet is rarely studied in individuals with acquired language disorders.

Methods: We used an auditory version of the well-studied Attention Network Test to study alerting, orienting, and executive control in 28 persons with chronic stroke (PWS). We further sought to characterize the neurobiology of each auditory attention measure in our sample using exploratory lesion-symptom mapping analyses.

View Article and Find Full Text PDF

A large proportion of older adults experience hearing loss. Yet, the impact of hearing loss on the aging brain, particularly on large-scale brain networks that support cognition and language, is relatively unknown. We used resting-state functional magnetic resonance imaging (fMRI) to identify hearing loss-related changes in the functional connectivity of primary auditory cortex to determine if these changes are distinct from age and cognitive measures known to decline with age (e.

View Article and Find Full Text PDF

Objective: Our aim was to determine the effect of acute changes in cochlear place of stimulation on cochlear implant (CI) sound quality.

Design: In Experiment 1, 5 single-sided deaf (SSD) listeners fitted with a long (28-mm) electrode array were tested. Basal shifts in place of stimulation were implemented by turning off the most apical electrodes and reassigning the filters to more basal electrodes.

View Article and Find Full Text PDF

Purpose Our aim was to make audible for normal-hearing listeners the Mickey Mouse™ sound quality of cochlear implants (CIs) often found following device activation. Method The listeners were 3 single-sided deaf patients fit with a CI and who had 6 months or less of CI experience. Computed tomography imaging established the location of each electrode contact in the cochlea and allowed an estimate of the place frequency of the tissue nearest each electrode.

View Article and Find Full Text PDF

Glioblastoma (GBM) is a heterogeneous and lethal brain cancer. These tumors are followed using magnetic resonance imaging (MRI), which is unable to precisely identify tumor cell invasion, impairing effective surgery and radiation planning. We present a novel hybrid model, based on multiparametric intensities, which combines machine learning (ML) with a mechanistic model of tumor growth to provide spatially resolved tumor cell density predictions.

View Article and Find Full Text PDF

Objectives: Despite changes to brain integrity with aging, some functions like basic language processes remain remarkably preserved. One theory for the maintenance of function in light of age-related brain atrophy is the engagement of compensatory brain networks. This study examined age-related changes in the neural networks recruited for simple language comprehension.

View Article and Find Full Text PDF