The occurrence of mutations of TDP-43, FUS, and C9ORF72 in amyotrophic lateral sclerosis (ALS) suggests pathogenic alterations to RNA metabolism and specifically to microRNA (miRNA) biology. Moreover, several ALS-related proteins impact stress granule dynamics affecting miRNA biogenesis and cellular miRNA levels. miRNAs are present in different biological fluids and have been proposed as potential biomarkers.
View Article and Find Full Text PDFTar DNA binding protein 43 (TDP-43) is the principal component of ubiquitinated protein inclusions present in nervous tissue of most cases of both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Previous studies described a TDP-43 transgenic mouse model that develops progressive motor dysfunction in the absence of protein aggregation or significant motoneuron loss, questioning its validity to study ALS. Here we have further characterized the course of the disease in TDP-43 mice using a battery of tests and biochemical approaches.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a fatal late-onset neurodegenerative disease characterized by the selective loss of motoneurons. The mechanisms underlying neuronal degeneration in ALS are starting to be elucidated, highlighting abnormal protein aggregation and altered mRNA metabolism as common phenomena. ALS involves the selective vulnerablility of a subpopulation of motoneurons, suggesting that intrinsic factors may determine ALS pathogenesis.
View Article and Find Full Text PDFProteins along the secretory pathway are co-translationally translocated into the lumen of the endoplasmic reticulum (ER) as unfolded polypeptide chains. Afterwards, they are usually modified with N-linked glycans, correctly folded and stabilized by disulfide bonds. ER chaperones and folding enzymes control these processes.
View Article and Find Full Text PDFThe most prevalent neurodegenerative disorders involve protein misfolding and the aggregation of specific proteins. Autophagy is becoming an attractive target to treat neurodegenerative disorders through the selective degradation of abnormally folded proteins by the lysosomal pathway. However, accumulating evidence indicates that autophagy impairment at different regulatory steps may contribute to the neurodegenerative process.
View Article and Find Full Text PDF