Publications by authors named "Leslie B Vosshall"

Background: Female Aedes aegypti mosquitoes can spread disease-causing pathogens when they bite humans to obtain blood nutrients required for egg production. Following a complete blood meal, host-seeking is suppressed until eggs are laid. Neuropeptide Y-like receptor 7 (NPYLR7) plays a role in endogenous host-seeking suppression and previous work identified small-molecule NPYLR7 agonists that inhibit host-seeking and blood-feeding when fed to mosquitoes at high micromolar doses.

View Article and Find Full Text PDF

Female mosquitoes can spread disease-causing pathogens when they bite humans to obtain blood nutrients required for egg production. Following a complete blood meal, host-seeking is suppressed until eggs are laid. Neuropeptide Y-like Receptor 7 (NPYLR7) plays a role in endogenous host-seeking suppression and previous work identified small molecule NPYLR7 agonists that suppress host-seeking and blood feeding when fed to mosquitoes at high micromolar doses.

View Article and Find Full Text PDF

Female mosquitoes impose a severe global public health burden as vectors of multiple viral pathogens. Under optimal environmental conditions, females have access to human hosts that provide blood proteins for egg development, conspecific males that provide sperm for fertilization, and freshwater that serves as an egg-laying substrate suitable for offspring survival. As global temperatures rise, females are faced with climate challenges like intense droughts and intermittent precipitation, which create unpredictable, suboptimal conditions for egg-laying.

View Article and Find Full Text PDF

Some people are more attractive to mosquitoes than others, but the mechanistic basis of this phenomenon is poorly understood. We tested mosquito attraction to human skin odor and identified people who are exceptionally attractive or unattractive to mosquitoes. These differences were stable over several years.

View Article and Find Full Text PDF

Aedes aegypti mosquitoes are a persistent human foe, transmitting arboviruses including dengue when they feed on human blood. Mosquitoes are intensely attracted to body odor and carbon dioxide, which they detect using ionotropic chemosensory receptors encoded by three large multi-gene families. Genetic mutations that disrupt the olfactory system have modest effects on human attraction, suggesting redundancy in odor coding.

View Article and Find Full Text PDF

Predatory animals pursue prey in a noisy sensory landscape, deciding when to continue or abandon their chase. The mosquito is a micropredator that first detects humans at a distance through sensory cues such as carbon dioxide. As a mosquito nears its target, it senses more proximal cues such as body heat that guide it to a meal of blood.

View Article and Find Full Text PDF

The mosquito shows extreme sexual dimorphism in feeding. Only females are attracted to and obtain a blood-meal from humans, which they use to stimulate egg production. The gene is sex-specifically spliced and encodes a BTB zinc-finger transcription factor proposed to be a master regulator of male courtship and mating behavior across insects.

View Article and Find Full Text PDF

Blood-feeding mosquitoes survive by feeding on nectar for metabolic energy but require a blood meal to develop eggs. Aedes aegypti females must accurately discriminate blood and nectar because each meal promotes mutually exclusive feeding programs with distinct sensory appendages, meal sizes, digestive tract targets, and metabolic fates. We investigated the syringe-like blood-feeding appendage, the stylet, and discovered that sexually dimorphic stylet neurons taste blood.

View Article and Find Full Text PDF

Many of the major biological discoveries of the 20th century were made using just six species: bacteria, and yeast, nematodes, flies and mice. Our molecular understanding of the cell division cycle, embryonic development, biological clocks and metabolism were all obtained through genetic analysis using these species. Yet the 'big 6' did not start out as genetic model organisms (hereafter 'model organisms'), so how did they mature into such powerful systems? First, these model organisms are abundant human commensals: they are the bacteria in our gut, the yeast in our beer and bread, the nematodes in our compost pile, the flies in our kitchen and the mice in our walls.

View Article and Find Full Text PDF

Female Aedes aegypti mosquitoes use multiple sensory modalities to hunt human hosts and obtain a blood meal for egg production. Attractive cues include carbon dioxide (CO), a major component of exhaled breath [1, 2]; heat elevated above ambient temperature, signifying warm-blooded skin [3, 4]; and dark visual contrast [5, 6], proposed to bridge long-range olfactory and short-range thermal cues [7]. Any of these sensory cues in isolation is an incomplete signal of a human host, and so a mosquito must integrate multimodal sensory information before committing to approaching and biting a person [8].

View Article and Find Full Text PDF

Female mosquitoes are deadly vectors of arboviral pathogens and breed in containers of freshwater associated with human habitation. Because high salinity is lethal to offspring, correctly evaluating water purity is a crucial parenting decision. We found that the DEG/ENaC channel and sensory neurons expressing control egg-laying initiation and choice in .

View Article and Find Full Text PDF

DEET (N, N-diethyl-meta-toluamide) is the most effective and widely used insect repellent, but its mechanism of action is both complex and controversial [1]. DEET acts on insect smell [2-6] and taste [7-11], and its olfactory mode of action requires the odorant co-receptor orco [2, 3, 6]. We previously observed that orco mutant female Aedes aegypti mosquitoes are strongly attracted to humans even in the presence of DEET, but they are rapidly repelled after contacting DEET-treated skin [6].

View Article and Find Full Text PDF

Female Aedes aegypti mosquitoes bite humans to obtain blood to develop their eggs. Remarkably, their strong attraction to humans is suppressed for days after the blood meal by an unknown mechanism. We investigated a role for neuropeptide Y (NPY)-related signaling in long-term behavioral suppression and discovered that drugs targeting human NPY receptors modulate mosquito host-seeking.

View Article and Find Full Text PDF

Female Aedes aegypti mosquitoes infect more than 400 million people each year with dangerous viral pathogens including dengue, yellow fever, Zika and chikungunya. Progress in understanding the biology of mosquitoes and developing the tools to fight them has been slowed by the lack of a high-quality genome assembly. Here we combine diverse technologies to produce the markedly improved, fully re-annotated AaegL5 genome assembly, and demonstrate how it accelerates mosquito science.

View Article and Find Full Text PDF

DEET (N,N-diethyl-meta-toluamide) is a synthetic chemical identified by the US Department of Agriculture in 1946 in a screen for repellents to protect soldiers from mosquito-borne diseases. Since its discovery, DEET has become the world's most widely used arthropod repellent and is effective against invertebrates separated by millions of years of evolution-including biting flies, honeybees, ticks, and land leeches. In insects, DEET acts on the olfactory system and requires the olfactory receptor co-receptor Orco, but exactly how it works remains controversial.

View Article and Find Full Text PDF

Female Aedes aegypti mosquitoes typically mate only once with one male in their lifetime, a behavior known as "monandry" [1]. This single mating event provisions the female with sufficient sperm to fertilize the >500 eggs she will produce during her ∼4- to 6-week lifespan in the laboratory [2]. Successful mating induces lifetime refractoriness to subsequent insemination by other males, enforcing the paternity of the first male [3-5].

View Article and Find Full Text PDF

Smell dysfunction is a common and underdiagnosed medical condition that can have serious consequences. It is also an early biomarker of neurodegenerative diseases, including Alzheimer's disease, where olfactory deficits precede detectable memory loss. Clinical tests that evaluate the sense of smell face two major challenges.

View Article and Find Full Text PDF

It is still not possible to predict whether a given molecule will have a perceived odor or what olfactory percept it will produce. We therefore organized the crowd-sourced DREAM Olfaction Prediction Challenge. Using a large olfactory psychophysical data set, teams developed machine-learning algorithms to predict sensory attributes of molecules based on their chemoinformatic features.

View Article and Find Full Text PDF

Background: Understanding the relationship between a stimulus and how it is perceived reveals fundamental principles about the mechanisms of sensory perception. While this stimulus-percept problem is mostly understood for color vision and tone perception, it is not currently possible to predict how a given molecule smells. While there has been some progress in predicting the pleasantness and intensity of an odorant, perceptual data for a larger number of diverse molecules are needed to improve current predictions.

View Article and Find Full Text PDF

Ingestion is a highly regulated behavior that integrates taste and hunger cues to balance food intake with metabolic needs. To study the dynamics of ingestion in the vinegar fly Drosophila melanogaster, we developed Expresso, an automated feeding assay that measures individual meal-bouts with high temporal resolution at nanoliter scale. Flies showed discrete, temporally precise ingestion that was regulated by hunger state and sucrose concentration.

View Article and Find Full Text PDF

Background: A complete genome sequence and the advent of genome editing open up non-traditional model organisms to mechanistic genetic studies. The mosquito Aedes aegypti is an important vector of infectious diseases such as dengue, chikungunya, and yellow fever and has a large and complex genome, which has slowed annotation efforts. We used comprehensive transcriptomic analysis of adult gene expression to improve the genome annotation and to provide a detailed tissue-specific catalogue of neural gene expression at different adult behavioral states.

View Article and Find Full Text PDF

While most animals thermotax only to regulate their temperature, female mosquitoes are attracted to human body heat during pursuit of a blood meal. Here we elucidate the basic rules of Aedes aegypti thermotaxis and test the function of candidate thermoreceptors in this important behavior. We show that host-seeking mosquitoes are maximally attracted to thermal stimuli approximating host body temperatures, seeking relative warmth while avoiding both relative cool and stimuli exceeding host body temperature.

View Article and Find Full Text PDF