Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. Limited treatment options have only marginally impacted patient survival over the past decades. The phophatidylinositol 3-kinase (PI3K) pathway, frequently altered in GBM, represents a potential target for the treatment of this glioma.
View Article and Find Full Text PDFInhibition of phosphoinositide 3-kinase (PI3K) signaling is an appealing approach to treat brain tumors, especially glioblastoma multiforme (GBM). We previously disclosed our successful approach to prospectively design potent and blood-brain barrier (BBB) penetrating PI3K inhibitors. The previously disclosed molecules were ultimately deemed not suitable for clinical development due to projected poor metabolic stability in humans.
View Article and Find Full Text PDFMutations that deregulate Notch1 and Ras/phosphoinositide 3 kinase (PI3K)/Akt signalling are prevalent in T-cell acute lymphoblastic leukaemia (T-ALL), and often coexist. Here we show that the PI3K inhibitor GDC-0941 is active against primary T-ALLs from wild-type and Kras(G12D) mice, and addition of the MEK inhibitor PD0325901 increases its efficacy. Mice invariably relapsed after treatment with drug-resistant clones, most of which unexpectedly had reduced levels of activated Notch1 protein, downregulated many Notch1 target genes, and exhibited cross-resistance to γ-secretase inhibitors.
View Article and Find Full Text PDFNicotinamide adenine dinucleotide (NAD) is a metabolite essential for cell survival and generated de novo from tryptophan or recycled from nicotinamide (NAM) through the nicotinamide phosphoribosyltransferase (NAMPT)-dependent salvage pathway. Alternatively, nicotinic acid (NA) is metabolized to NAD through the nicotinic acid phosphoribosyltransferase domain containing 1 (NAPRT1)-dependent salvage pathway. Tumor cells are more reliant on the NAMPT salvage pathway making this enzyme an attractive therapeutic target.
View Article and Find Full Text PDFAlthough mitogen-activated protein (MAP)-extracellular signal-regulated kinase (ERK) kinase (MEK) inhibition is predicted to cause cell death by stabilization of the proapoptotic BH3-only protein BIM, the induction of apoptosis is often modest. To determine if addition of a Bcl-2 family inhibitor could increase the efficacy of a MEK inhibitor, we evaluated a panel of 53 non-small cell lung cancer and pancreatic cancer cell lines with the combination of navitoclax (ABT-263), a Bcl-2/Bcl-xL (BCL2/BCL2L1) antagonist, and a novel MAP kinase (MEK) inhibitor, G-963. The combination is synergistic in the majority of lines, with an enrichment of cell lines harboring KRAS mutations in the high synergy group.
View Article and Find Full Text PDFPurpose: We describe the preclinical pharmacology and antitumor activity of GDC-0068, a novel highly selective ATP-competitive pan-Akt inhibitor currently in clinical trials for the treatment of human cancers.
Experimental Design: The effect of GDC-0068 on Akt signaling was characterized using specific biomarkers of the Akt pathway, and response to GDC-0068 was evaluated in human cancer cell lines and xenograft models with various genetic backgrounds, either as a single agent or in combination with chemotherapeutic agents.
Results: GDC-0068 blocked Akt signaling both in cultured human cancer cell lines and in tumor xenograft models as evidenced by dose-dependent decrease in phosphorylation of downstream targets.
Purpose: Glioblastoma (GBM), the most common primary brain tumor in adults, presents a high frequency of alteration in the PI3K pathway. Our objectives were to identify a dual PI3K/mTOR inhibitor optimized to cross the blood-brain barrier (BBB) and characterize its brain penetration, pathway modulation in the brain and efficacy in orthotopic xenograft models of GBM.
Experimental Design: Physicochemical properties of PI3K inhibitors were optimized using in silico tools, leading to the identification of GNE-317.
Inhibition of phosphoinositide 3-kinase (PI3K) signaling through PI3Kα has received significant attention for its potential in cancer therapy. While the PI3K pathway is a well-established and widely pursued target for the treatment of many cancer types due to the high frequency of abnormal PI3K signaling, glioblastoma multiforme (GBM) is particularly relevant because the pathway is implicated in more than 80% of GBM cases. Herein, we report the identification of PI3K inhibitors designed to cross the blood-brain barrier (BBB) to engage their target where GBM tumors reside.
View Article and Find Full Text PDF(S)-1-{4-[2-(2-Amino-pyrimidin-5-yl)-7-methyl-4-morpholin-4-yl-thieno[3,2-d]pyrimidin-6-ylmethyl]-piperazin-1-yl}-2-hydroxy-propan-1-one (GDC-0980) is a potent and selective inhibitor of phosphatidylinositol 3-kinase (PI3K) and mammalian target of rapamycin, two key components of the PI3K pathway, the deregulation of which is associated with the development of many cancers. The objectives of these studies were to characterize the absorption and disposition of GDC-0980 and assess its efficacy in an MCF7-neo/HER2 human breast cancer xenograft model in immunocompromised mice. Studies in parental Madin-Darby canine kidney cells indicated that GDC-0980 had high permeability (P(app) = 18 × 10⁻⁶ cm/s), suggesting good absorption potential.
View Article and Find Full Text PDFPurpose: Docetaxel is a front-line standard-of-care chemotherapeutic drug for the treatment of breast cancer. Phosphoinositide 3-kinases (PI3K) are lipid kinases that regulate breast tumor cell growth, migration, and survival. The current study was intended to determine whether GDC-0941, an orally bioavailable class I selective PI3K inhibitor, enhances the antitumor activity of docetaxel in human breast cancer models in vitro and in vivo.
View Article and Find Full Text PDF2-(1H-Indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine (GDC-0941) is a novel small molecule inhibitor of the phosphatidylinositol 3-kinase (PI3K) pathway currently evaluated in the clinic as an anticancer agent. The objectives of this study were to determine in vitro whether GDC-0941 was a substrate of P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp1) and to investigate the impact of these transporters on the pharmacokinetics, brain penetration, and activity of GDC-0941 in FVBn mice (wild-type) and Mdr1a/b(-/-), Bcrp1(-/-), and Mdr1a/b(-/-)/Bcrp1(-/-) knockout mice. Studies with Madin-Darby canine kidney cells transfected with P-gp or Bcrp1 established that this compound was a substrate of both transporters.
View Article and Find Full Text PDFTherapeutic inhibitors are being developed against the phosphoinositide 3-kinase (PI3K) pathway, the deregulation of which drives tumor growth and survival in many cancers. There are eight PI3Ks in mammals divided into three classes. Class IA PI3Ks (p110alpha, p110beta, and p110delta) are critical for cell growth and survival, with the p110alpha isoform implicated as the most important in carcinomas.
View Article and Find Full Text PDFPulmonary fibrosis is the consequence of a variety of diseases with no satisfying treatment option. Therapy-induced fibrosis also limits the efficacy of chemotherapy and radiotherapy in numerous cancers. Here, we studied the potential of platelet-derived growth factor (PDGF) receptor tyrosine kinase inhibitors (RTKIs) to attenuate radiation-induced pulmonary fibrosis.
View Article and Find Full Text PDFPurpose: The purpose of this study was to evaluate the effect of the receptor tyrosine kinase inhibitor SU11654 on the activity of its molecular target KIT in canine mast cell tumors (MCT) and correlate target inhibition with mutational status of the c-kit juxtamembrane domain and SU11654 plasma concentration.
Experimental Design: Tumor biopsies were obtained from dogs with advanced MCTs before and 8 h after administration of a single oral dose of SU11654, previously shown to be active in dogs with MCTs. Blood samples were taken to determine the plasma concentration of SU11654.
SU11248 is an oral multitargeted tyrosine kinase inhibitor with antitumor and antiangiogenic activities through targeting platelet-derived growth factor receptor, vascular endothelial growth factor receptor, KIT, and FLT3, the first three of which are expressed in human breast cancer and/or its supporting tissues. The purpose of the present studies was to demonstrate the potent anticancer activity of SU11248 alone or in combination with conventional cytotoxic agents against several distinct preclinical models of breast cancer. SU11248 was administered as a monotherapy to (1) mouse mammary tumor virus-v-Ha-ras mice and 7,12-dimethylbenz(a)anthracene-treated rats bearing mammary tumors and (2) mice bearing human breast cancer xenografts of s.
View Article and Find Full Text PDFThe purpose of this study was to evaluate the activity of the indolinone kinase inhibitor SU11248 against the receptor tyrosine kinase KIT in vitro and in vivo, examine the role of KIT in small cell lung cancer (SCLC), and anticipate clinical utility of SU11248 in SCLC. SU11248 is an oral, multitargeted tyrosine kinase inhibitor with direct antitumor and antiangiogenic activity through targeting platelet-derived growth factor receptor (PDGFR), vascular endothelial growth factor receptor, KIT, and FLT3 receptors. Treatment of the KIT-expressing SCLC-derived NCI-H526 cell line in vitro with SU11248 resulted in dose-dependent inhibition of stem cell factor-stimulated KIT phosphotyrosine levels and proliferation.
View Article and Find Full Text PDFOne challenging aspect in the clinical development of molecularly targeted therapies, which represent a new and promising approach to treating cancers, has been the identification of a biologically active dose rather than a maximum tolerated dose. The goal of the present study was to identify a pharmacokinetic/pharmacodynamic relationship in preclinical models that could be used to help guide selection of a clinical dose. SU11248, a novel small molecule receptor tyrosine kinase inhibitor with direct antitumor as well as antiangiogenic activity via targeting the vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), KIT, and FLT3 receptor tyrosine kinases, was used as the pharmacological agent in these studies.
View Article and Find Full Text PDFFLT3 (fms-related tyrosine kinase/Flk2/Stk-2) is a receptor tyrosine kinase (RTK) primarily expressed on hematopoietic cells. In blasts from acute myelogenous leukemia (AML) patients, 2 classes of FLT3 activating mutations have been identified: internal tandem duplication (ITD) mutations in the juxtamembrane domain (25%-30% of patients) and point mutations in the kinase domain activation loop (7%-8% of patients). FLT3-ITD mutations are the most common molecular defect identified in AML and have been shown to be an independent prognostic factor for decreased survival.
View Article and Find Full Text PDF