Pectins are a family of complex cell-wall polysaccharides, the biosynthesis of which remains poorly understood. We identified dwarf mutants with reduced cell adhesion at a novel locus, QUASIMODO2 (QUA2). qua2-1 showed a 50% reduction in homogalacturonan (HG) content compared with the wild type, without affecting other cell-wall polysaccharides.
View Article and Find Full Text PDFPlant cell walls are degraded by glycoside hydrolases that often contain noncatalytic carbohydrate-binding modules (CBMs), which potentiate degradation. There are currently 11 sequence-based cellulose-directed CBM families; however, the biological significance of the structural diversity displayed by these protein modules is uncertain. Here we interrogate the capacity of eight cellulose-binding CBMs to bind to cell walls.
View Article and Find Full Text PDFGlycoside hydrolases that degrade plant cell walls have complex molecular architectures in which one or more catalytic modules are appended to noncatalytic carbohydrate-binding modules (CBMs). CBMs promote binding to polysaccharides and potentiate enzymic hydrolysis. Although there are diverse sequence-based families of xylan-binding CBMs, these modules, in general, recognize both decorated and unsubstituted forms of the target polysaccharide, and thus the evolutionary rationale for this diversity is unclear.
View Article and Find Full Text PDFTwo rat monoclonal antibodies have been generated to plant cell wall (1-->4)-beta-D-xylans using a penta-1,4-xylanoside-containing neoglycoprotein as an immunogen. The monoclonal antibodies, designated LM10 and LM11, have different specificities to xylans in relation to the substitution of the xylan backbone as indicated by immunodot assays and competitive-inhibition ELISAs. LM10 is specific to unsubstituted or low-substituted xylans, whereas LM11 binds to wheat arabinoxylan in addition to unsubstituted xylans.
View Article and Find Full Text PDFThe herbicide isoxaben is a highly specific and potent inhibitor of cellulose synthesis in plants. Nevertheless, suspension-cultured cells can be habituated to grow in high concentrations of isoxaben, and apparently compensate for the disruption of cellulose synthesis by the modulation of other cell wall components. We have habituated Arabidopsis cells to isoxaben and characterized the cellular and genetic consequences.
View Article and Find Full Text PDFPectins are a highly complex family of cell wall polysaccharides comprised of homogalacturonan (HGA), rhamnogalacturonan I and rhamnogalacturonan II. We have specifically modified HGA in both tobacco (Nicotiana tabacum) and Arabidopsis by expressing the endopolygalacturonase II of Aspergillus niger (AnPGII). Cell walls of transgenic tobacco plants showed a 25% reduction in GalUA content as compared with the wild type and a reduced content of deesterified HGA as detected by antibody labeling.
View Article and Find Full Text PDFWe report the isolation and characterization of a monoclonal antibody, designated LM9, against feruloylated-(1-->4)-beta-D-galactan. This epitope is a structural feature of cell wall pectic polysaccharides of plants belonging to the family Amaranthaceae (including the Chenopodiaceae). Immuno-assays and immunofluorescence microscopy indicated that LM9 binding is specific to samples and cell walls obtained from species belonging to this family.
View Article and Find Full Text PDFNovel molecular probes have been developed for the analysis and detection of polysaccharides in plant cell walls using carbohydrate-binding modules (CBMs) derived from modular glycoside hydrolases belonging to families 2a, 6, and 29. Recombinant forms of these proteins containing his-tags, in conjunction with anti-his-tag detection, provide a flexible system that utilizes CBMs as molecular probes in a range of applications. Assays for the rapid analysis of the binding of CBMs to polysaccharides and oligosaccharides using nitrocellulose-based CBM macroarrays and microtiter plate-based CBM capture and competitive-inhibition assays are described.
View Article and Find Full Text PDFA monoclonal antibody (LM8) was generated with specificity for xyloglacturonan (XGA) isolated from pea (Pisum sativum L.) testae. Characterization of the LM8 epitope indicates that it is a region of XGA that is highly substituted with xylose.
View Article and Find Full Text PDFHere we demonstrate that the pectic rhamnogalacturonan-I-associated LM5 (1-->4)-beta-d-galactan epitope occurs in a restricted manner at the root surface of intact Arabidopsis seedlings. The root surface occurrence of (1-->4)-beta-d-galactan marks the transition zone at or near the onset of rapid cell elongation and the epitope is similarly restricted in occurrence in epidermal, cortical and endodermal cell walls. The extent of surface (1-->4)-beta-d-galactan occurrence is reduced in response to genetic mutations (stp-1, ctr-1) and hormone applications that reduce root cell elongation.
View Article and Find Full Text PDFThe occurrence of pectic polysaccharide epitopes in cells and tissues of the pea testa during late stages of seed development have been examined in relation to anatomy and cell properties. Homogalacturonan, in a highly methyl-esterified form, was present throughout late development in all pea testa cell walls, including the thickened cell walls of the outer macrosclereid layer. Two epitopes, characteristic of the side-chains of the rhamnogalacturonan-I domain of pectic polysaccharides, occurred in restricted and separate cell layers of the pea testa.
View Article and Find Full Text PDF