Publications by authors named "Lesley Knoll"

Article Synopsis
  • - Climate change is causing a decrease in winter ice cover on lakes, which has a variety of negative effects on society and the environment that are not yet fully understood.
  • - The reduction in ice leads to safety issues, changes in fisheries, increased erosion, and threatens water quality and biodiversity.
  • - To address these challenges, it's important to study these changes more closely and promote collaboration across different fields for better lake management and sustainability.
View Article and Find Full Text PDF

The quality of lake ice is of uppermost importance for ice safety and under-ice ecology, but its temporal and spatial variability is largely unknown. Here we conducted a coordinated lake ice quality sampling campaign across the Northern Hemisphere during one of the warmest winters since 1880 and show that lake ice during 2020/2021 commonly consisted of unstable white ice, at times contributing up to 100% to the total ice thickness. We observed that white ice increased over the winter season, becoming thickest and constituting the largest proportion of the ice layer towards the end of the ice cover season when fatal winter drownings occur most often and light limits the growth and reproduction of primary producers.

View Article and Find Full Text PDF

In recent decades, lakes have experienced unprecedented ice loss with widespread ramifications for winter ecological processes. The rapid loss of ice, resurgence of winter biology, and proliferation of remote sensing technologies, presents a unique opportunity to integrate disciplines to further understand the broad spatial and temporal patterns in ice loss and its consequences. Here, we summarize ice phenology records for 78 lakes in 12 countries across North America, Europe, and Asia to permit the inclusion and harmonization of in situ ice phenology observations in future interdisciplinary studies.

View Article and Find Full Text PDF
Article Synopsis
  • Climate change has altered the thermal structure of lakes, impacting both surface and deep water temperatures, though surface changes are more documented than deepwater trends.
  • This study presents a comprehensive dataset of vertical temperature profiles from 153 lakes, starting from as early as 1894, allowing for a deeper analysis of long-term trends.
  • The researchers also collected various geographic and water quality data to understand how different factors influence the thermal structures of these lakes amid ongoing environmental changes.
View Article and Find Full Text PDF

Winter conditions, such as ice cover and snow accumulation, are changing rapidly at northern latitudes and can have important implications for lake processes. For example, snowmelt in the watershed-a defining feature of lake hydrology because it delivers a large portion of annual nutrient inputs-is becoming earlier. Consequently, earlier and a shorter duration of snowmelt are expected to affect annual phytoplankton biomass.

View Article and Find Full Text PDF
Article Synopsis
  • The concentration of dissolved oxygen in lakes affects biodiversity, nutrient cycling, greenhouse gas emissions, and drinking water quality, yet long-term changes remain largely unexplored compared to oceans.
  • A study of 45,148 profiles from 393 temperate lakes reveals widespread declines in dissolved oxygen levels, particularly in deep waters due to thermal stratification and loss of clarity, while surface waters show varied results.
  • Declines in freshwater oxygen levels are significantly higher than those in oceans, raising concerns about the impact on essential lake ecosystem services amidst climate change and reduced water clarity.
View Article and Find Full Text PDF
Article Synopsis
  • Lake eutrophication, driven by nutrient over-enrichment from agriculture and urban areas, leads to excessive phytoplankton growth, self-shading, and light limitation, yet the role of carbon limitation is often overlooked.
  • A study found that carbon dioxide (CO) undersaturation happens significantly more often in eutrophic lakes than in deeper, forested lakes, with annual occurrences around 34% and summer instances up to 44%.
  • The research showed that high light levels and shallow depths contribute to CO depletion, revealing that conditions of carbon limitation at the whole-lake scale are key for understanding phytoplankton biomass, emphasizing the need for new strategies to tackle both eutrophication and carbon depletion together.
View Article and Find Full Text PDF
Article Synopsis
  • Global lake surface water temperatures have warmed at an average rate of +0.37 °C per decade, while deepwater temperatures have shown minimal average change (+0.06 °C per decade), but with high variability among individual lakes.
  • The study analyzed long-term vertical temperature data from 1970-2009 to uncover trends and influences on lake thermal structures.
  • The variability in deepwater temperature trends is not fully explained by surface temperatures or internal lake factors, suggesting that broader climate patterns or human activities play a significant role in these long-term changes.
View Article and Find Full Text PDF

Winter activities on ice are culturally important for many countries, yet they constitute a high safety risk depending upon the stability of the ice. Because consistently cold periods are required to form stable and thick ice, warmer winters could degrade ice conditions and increase the likelihood of falling through the ice. This study provides the first large-scale assessment of winter drowning from 10 Northern Hemisphere countries.

View Article and Find Full Text PDF

Storm events disproportionately mobilize dissolved phosphorus (P) compared to nitrogen (N), contributing to reduction in load N:P. In agricultural watersheds, conservation tillage may lead to even further declines in load N:P due to dissolved P accumulation in the top soil layers. Due to an increase in this management activity, we were interested in the impacts of conservation tillage on N and P loads during storm events.

View Article and Find Full Text PDF

Increases in terrestrially-derived dissolved organic matter (DOM) have led to the browning of inland waters across regions of northeastern North America and Europe. Short-term experimental and comparative studies highlight the important ecological consequences of browning. These range from transparency-induced increases in thermal stratification and oxygen (O2) depletion to changes in pelagic food web structure and alteration of the important role of inland waters in the global carbon cycle.

View Article and Find Full Text PDF

Animals can be important in nutrient cycling in particular ecosystems, but few studies have examined how this importance varies along environmental gradients. In this study we quantified the nutrient cycling role of an abundant detritivorous fish species, the gizzard shad (Dorosoma cepedianum), in reservoir ecosystems along a gradient of ecosystem productivity. Gizzard shad feed mostly on sediment detritus and excrete sediment-derived nutrients into the water column, thereby mediating a cross-habitat translocation of nutrients to phytoplankton.

View Article and Find Full Text PDF