Genetic variation in an infectious disease pathogen can be driven by ecological niche dissimilarities arising from different host species and different geographical locations. Whole genome sequencing was used to compare E. coli O157 isolates from host reservoirs (cattle and sheep) from Scotland and to compare genetic variation of isolates (human, animal, environmental/food) obtained from Scotland, New Zealand, Netherlands, Canada and the USA.
View Article and Find Full Text PDFIdentifying the major sources of risk in disease transmission is key to designing effective controls. However, understanding of transmission dynamics across species boundaries is typically poor, making the design and evaluation of controls particularly challenging for zoonotic pathogens. One such global pathogen is Escherichia coli O157, which causes a serious and sometimes fatal gastrointestinal illness.
View Article and Find Full Text PDFLytic or lysogenic infections by bacteriophages drive the evolution of enteric bacteria. Enterohemorrhagic Escherichia coli (EHEC) have recently emerged as a significant zoonotic infection of humans with the main serotypes carried by ruminants. Typical EHEC strains are defined by the expression of a type III secretion (T3S) system, the production of Shiga toxins (Stx) and association with specific clinical symptoms.
View Article and Find Full Text PDFEscherichia coli O26 and O157 have similar overall prevalences in cattle in Scotland, but in humans, Shiga toxin-producing E. coli O26 infections are fewer and clinically less severe than E. coli O157 infections.
View Article and Find Full Text PDFTo determine the proportion of Escherichia coli O157 cases in Scotland attributable to secondary spread, we analyzed data obtained through entire-population enhanced surveillance. We identified 11% of cases as secondary. Secondary cases in single households were younger than secondary cases in outbreaks affecting >1 household and had similar risk for hemolytic uremic syndrome.
View Article and Find Full Text PDFComposite wild bird feces collected at regular intervals from a garden feeding station in southwest Scotland over a 3-year period were examined for verocytotoxin-producing Escherichia coli O157. One sample was positive for Escherichia coli O157. The isolate belonged to phage type 21/28 and possessed vtx2, eaeA, and enterohemorrhagic E.
View Article and Find Full Text PDF