Publications by authors named "Lesley Greene"

Extraction of high molecular weight (HMW) DNA for long read sequencing with little to no fragmentation and high purity is difficult to acquire from cyanobacterial species. Here we describe a modified method of extraction using Promega's Wizard HMW DNA Extraction Kit to acquire high molecular weight DNA from two cyanobacterial species. The protocol used in the kit is the "3.

View Article and Find Full Text PDF

Our knowledge of the folding behavior of proteins from extremophiles is limited at this time. These proteins may more closely resemble the primordial proteins selected in early evolution under extreme conditions. The small archaeal modifier protein 1 (SAMP1) studied in this report is an 87-residue protein with a β-grasp fold found in the halophile Haloferax volcanii from the Dead Sea.

View Article and Find Full Text PDF

Two proteins within the β-grasp superfamily, the B1-domain of protein G and the small archaeal modifier protein 1, were investigated to elucidate the key determinants of structural stability at the level of individual interactions. These symmetrical proteins both contain two β-hairpins which form a sheet flanked by a central α-helix. They were subjected to high temperature molecular dynamics simulations and the detailed behavior of each long-range interaction was characterized.

View Article and Find Full Text PDF

Introduction: BP1 is a thermophilic strain of cyanobacteria that has an optimum growth at 57°C, and according to previous analysis by Yamaoka et al, BP1 cannot survive at a temperature below 30°C. This suggests that the thermophilic property of this strain may be used as a natural biosafety feature to limit the spread of genetically engineered (GE) organisms in the environment if physical containment fails.

Objective: To further explore the growth and survivability range of BP1, we report a growth and survivability assay of wild-type and GE BP1 strains under different conditions.

View Article and Find Full Text PDF

Understanding and computationally predicting the protein folding process remains one of the most challenging scientific problems and has uniquely garnered the interdisciplinary efforts of researchers from both the biological, chemical, physical and computational disciplines. Previous studies have demonstrated the importance of long-range interactions in guiding the native structure. However, predicting how the native long-range interaction network forms to generate a specific topology from among all other conformations remains unresolved.

View Article and Find Full Text PDF

Synthetic biology with genetically engineered (GE) cyanobacteria has the potential to produce valuable products such as biofuels. However, it is also essential to assess the potential risks of synthetic biology technology before it can be widely used. In order to address key concerns posed by the application of synthetic biology to microorganisms, studies were designed to monitor the horizontal transfer of engineered genes from GE cyanobacteria Thermosynechococcus elongatus BP1 to Escherichia coli through co-incubation.

View Article and Find Full Text PDF

In the European Union demonstration of 'significant benefit' is mandatory if satisfactory methods exist for a disease targeted by a new orphan medicinal product. Significant benefit is required at the time of orphan designation, when it can be supported by preclinical studies, and at the time of marketing authorization, when clinical data are needed. For the first time, our work has identified, defined and organized the scientific grounds on which significant benefit is granted in the European Union, based on a review of the orphan medicinal products authorized in the years 2000-2015, and on the working experience of the Committee of Orphan Medicinal Products.

View Article and Find Full Text PDF

The B1 domain of protein G (GB1) is a small, 56 amino acid bacterial immunoglobulin-binding protein with a 4β+ α fold. Architecturally, it is composed of a two-layer sandwich consisting of a four-stranded β -sheet that packs against an α -helix. Using several bioinformatics approaches, we investigated which residues may be key determinants of this fold.

View Article and Find Full Text PDF
Protein structure networks.

Brief Funct Genomics

November 2012

The application of the field of network science to the scientific disciplines of structural biology and biochemistry, have yielded important new insights into the nature and determinants of protein structures, function, dynamics and the folding process. Advancements in further understanding protein relationships through network science have also reshaped the way we view the connectivity of proteins in the protein universe. The canonical hierarchical classification can now be visualized for example, as a protein fold continuum.

View Article and Find Full Text PDF

The protein folding process has been studied both computationally and experimentally for over 30 years. To date there is no detailed mechanism to explain the formation of long-range interactions between the transition and native states. Long-range interactions are the principle determinants of the tertiary structure.

View Article and Find Full Text PDF

Amyloidosis resulting from the deposition of aggregated protein has been linked to many debilitating degenerative diseases which include most notably Alzheimer's and Parkinson's. The tendency for a protein to alternatively form highly ordered amyloid fibrils is dependent on many biological factors. Mutations, temperature, concentration, translational motion and pH play a pivotal role in inducing fibril aggregate assembly in vitro.

View Article and Find Full Text PDF

To advance our understanding of the protein folding process, we use stopped-flow far-ultraviolet (far-UV) circular dichroism and quenched-flow hydrogen-deuterium exchange coupled with nuclear magnetic resonance (NMR) spectroscopy to monitor the formation of hydrogen-bonded secondary structure in the C-terminal domain of the Fas-associated death domain (Fadd-DD). The death domain superfamily fold consists of six α-helices arranged in a Greek-key topology, which is shared by the all-β-sheet immunoglobulin and mixed α/β-plait superfamilies. Fadd-DD is selected as our model death domain protein system because the structure of this protein has been solved by NMR spectroscopy, and both thermodynamic and kinetic analysis indicate it to be a stable, monomeric protein with a rapidly formed hydrophobic core.

View Article and Find Full Text PDF

In 2000, regulation on orphan medicinal products was adopted in the European Union with the aim of benefiting patients who suffer from serious, rare conditions for which there is currently no satisfactory treatment. Since then, more than 850 orphan drug designations have been granted by the European Commission based on a positive opinion from the Committee for Orphan Medicinal Products (COMP), and more than 60 orphan drugs have received marketing authorization in Europe. Here, stimulated by the tenth anniversary of the COMP, we reflect on the outcomes and experience gained in the past decade, and contemplate issues for the future, such as catalysing drug development for the large number of rare diseases that still lack effective treatments.

View Article and Find Full Text PDF

Background: Chitinases are prevalent in life and are found in species including archaea, bacteria, fungi, plants, and animals. They break down chitin, which is the second most abundant carbohydrate in nature after cellulose. Hence, they are important for maintaining a balance between carbon and nitrogen trapped as insoluble chitin in biomass.

View Article and Find Full Text PDF

This paper explores the structural continuum in CATH and the extent to which superfamilies adopt distinct folds. Although most superfamilies are structurally conserved, in some of the most highly populated superfamilies (4% of all superfamilies) there is considerable structural divergence. While relatives share a similar fold in the evolutionary conserved core, diverse elaborations to this core can result in significant differences in the global structures.

View Article and Find Full Text PDF

Backbone (15)N relaxation parameters and (15)N-(1)H(N) residual dipolar couplings (RDCs) have been measured for a variant of human alpha-lactalbumin (alpha-LA) in 4, 6, 8 and 10 M urea. In the alpha-LA variant, the eight cysteine residues in the protein have been replaced by alanines (all-Ala alpha-LA). This protein is a partially folded molten globule at pH 2 and has been shown previously to unfold in a stepwise non-cooperative manner on the addition of urea.

View Article and Find Full Text PDF

Computational and experimental studies focusing on the role of conserved amino acids for folding and stability is an active and promising area of research. To date however, only a small fraction of the potential superfamilies have been investigated. To further expand our understanding we present the results of a bioinformatics analysis of the death domain superfamily.

View Article and Find Full Text PDF

The molten globule state is a partially folded conformer of proteins that has been the focus of intense study for more than two decades. This non-native fluctuating conformation has been linked to protein-folding intermediates, to biological function, and more recently to precursors in amyloid fibril formation. The molten globule state of human serum retinol-binding protein (RBP) has been postulated previously to be involved in the mechanism of ligand release (Ptitsyn, O.

View Article and Find Full Text PDF

Retinol-binding protein transports retinol, and circulates in the plasma as a macromolecular complex with the protein transthyretin. Under acidic conditions retinol-binding protein undergoes a transition to the molten globule state, and releases the bound retinol ligand. A biased molecular dynamics simulation method has been used to generate models for the ensemble of conformers populated within this molten globule state.

View Article and Find Full Text PDF

We have developed an efficient and novel filter assay method, involving radioactive labelling and imaging, to quantify the expression of soluble proteins from a cell-free translation system. Here this method is combined with the conformational sensitivity of 19F NMR to monitor the folded state of the expressed protein. This report describes the optimisation of 6-fluorotryptophan incorporation in a His-tagged human serum retinol-binding protein (RBP), a disulphide bonded beta-barrel protein.

View Article and Find Full Text PDF

Traditionally, proteins have been viewed as a construct based on elements of secondary structure and their arrangement in three-dimensional space. In a departure from this perspective we show that protein structures can be modelled as network systems that exhibit small-world, single-scale, and to some degree, scale-free properties. The phenomenological network concept of degrees of separation is applied to three-dimensional protein structure networks and reveals how amino acid residues can be connected to each other within six degrees of separation.

View Article and Find Full Text PDF

We systematically identify a group of evolutionarily conserved residues proposed for folding in a model beta-barrel superfamily, the lipocalins. The nature of conservation at the structural level is defined and we show that the conserved residues are involved in a network of interactions that form the core of the fold. Exploratory kinetic studies are conducted with a model superfamily member, human serum retinol-binding protein, to examine their role.

View Article and Find Full Text PDF