Publications by authors named "Lesley A Smyth"

Ischemia-reperfusion injury (IRI) amplifies T cell alloimmune responses after transplantation with thrombin playing a key pro-inflammatory role. To explore the influence of thrombin on regulatory T cell recruitment and efficacy we used a well-established model of IRI in the native murine kidney. Administration of the cytotopic thrombin inhibitor PTL060 inhibited IRI, and by skewing expression of chemokines (reducing CCL2 and CCL3 but increasing CCL17 and CCL22) increased the infiltration of M2 macrophages and Tregs.

View Article and Find Full Text PDF

Regulatory T cells (Tregs) are a promising candidate cell therapy to treat autoimmune diseases and aid the longevity of transplanted solid organs. Despite increasing numbers of clinical trials using human Treg therapy, important questions pertaining to their fate, distribution, and function remain unanswered. Treg accumulation in relevant tissues was found to be crucial for Treg therapy efficacy, but existing blood-borne biomarkers are unlikely to accurately reflect the tissue state.

View Article and Find Full Text PDF

Nox2 is a ROS-generating enzyme, deficiency of which increases suppression by Tregs in vitro and in an in vivo model of cardiac remodeling. As Tregs have emerged as a candidate therapy in autoimmunity and transplantation, we hypothesized that Nox2 deficiency in Tregs in recipient mice may improve outcomes in a heart transplant model. We generated a potentially novel B6129 mouse model with Treg-targeted Nox2 deletion (Nox2fl/flFoxP3Cre+ mice) and transplanted with hearts from CB6F1 donors.

View Article and Find Full Text PDF

Regulatory T cells (Tregs) are emerging as a new cell-based therapy in solid organ transplantation. Adoptive transfer of Tregs has been shown preclinically to protect from graft rejection, and the safety of Treg therapy has been demonstrated in clinical trials. Despite these successes, the distribution and persistence of adoptively transferred Tregs remained elusive, which hampers clinical translation.

View Article and Find Full Text PDF

Regulatory T cells (Tregs) are a subpopulation of CD4 T cells with a fundamental role in maintaining immune homeostasis and inhibiting unwanted immune responses using several different mechanisms. Recently, the intercellular transfer of molecules between Tregs and their target cells has been shown via trogocytosis and the release of small extracellular vesicles (sEVs). In this study, CD4CD25CD127 human Tregs were found to produce sEVs capable of inhibiting the proliferation of effector T cells (Teffs) in a dose dependent manner.

View Article and Find Full Text PDF

B cells have been implicated in transplant rejection via antibody-mediated mechanisms and more recently by presenting donor antigens to T cells. We have shown in patients with chronic antibody-mediated rejection that B cells control the indirect T cell alloresponses. To understand more about the role of B cells as antigen-presenting cells for CD4 T cell with indirect allospecificity, B cells were depleted in C57BL/6 mice, using an anti-CD20 antibody, prior to receiving MHC class I-mismatched (K ) skin.

View Article and Find Full Text PDF

Regulatory T cells (Tregs) are a subpopulation of T cells that maintain immunological tolerance. In inflammatory responses the function of Tregs is tightly controlled by several factors including signaling through innate receptors such as Toll like receptors and anaphylatoxin receptors allowing an effective immune response to be generated. Protease-activated receptors (PARs) are another family of innate receptors expressed on multiple cell types and involved in the pathogenesis of autoimmune disorders.

View Article and Find Full Text PDF

Extracellular vesicles, in particular exosomes, have recently gained interest as novel drug delivery vectors due to their biological origin and inherent intercellular biomolecule delivery capability. An in-depth knowledge of their biodistribution is therefore essential. This work aimed to develop a novel, reliable and universal method to radiolabel exosomes to study their biodistribution.

View Article and Find Full Text PDF

Tumour-specific, immuno-based therapeutic interventions can be considered as safe and effective approaches for cancer therapy. Exploitation of nano-vaccinology to intensify the cancer vaccine potency may overcome the need for administration of high vaccine doses or additional adjuvants and therefore could be a more efficient approach. Carbon nanotube (CNT) can be described as carbon sheet(s) rolled up into a cylinder that is nanometers wide and nanometers to micrometers long.

View Article and Find Full Text PDF

The superoxide-generating enzyme Nox2 contributes to hypertension and cardiovascular remodeling triggered by activation of the renin-angiotensin system. Multiple Nox2-expressing cells are implicated in angiotensin II-induced (Ang II-induced) pathophysiology, but the importance of Nox2 in leukocyte subsets is poorly understood. Here, we investigated the role of Nox2 in T cells, particularly Tregs.

View Article and Find Full Text PDF

Regulatory T cells (Treg) are a subpopulation of T cells that maintain tolerance to self and limit other immune responses. They achieve this through different mechanisms including the release of extracellular vesicles (EVs) such as exosomes as shown by us, and others. One of the ways that Treg derived EVs inhibit target cells such as effector T cells is via the transfer of miRNA.

View Article and Find Full Text PDF

Solid organ transplantation remains the treatment of choice for end-stage organ failure. Whilst the short-term outcomes post-transplant have improved in the last decades, chronic rejection and immunosuppressant side effects remain an ongoing concern. Hematopoietic stem cell transplantation is a well-established procedure for the treatment of patients with haematological disorders.

View Article and Find Full Text PDF

Direct allorecognition is the process by which donor-derived major histocompatibility complex (MHC)-peptide complexes, typically presented by donor-derived 'passenger' dendritic cells, are recognised directly by recipient T cells. In this review, we discuss the two principle theories which have been proposed to explain why individuals possess a high-precursor frequency of T cells with direct allospecificity and how self-restricted T cells recognise allogeneic MHC-peptide complexes. These theories, both of which are supported by functional and structural data, suggest that T cells recognising allogeneic MHC-peptide complexes focus either on the allopeptides bound to the allo-MHC molecules or the allo-MHC molecules themselves.

View Article and Find Full Text PDF

Exosomes are extracellular vesicles released by many cells of the body. These small vesicles play an important part in intercellular communication both in the local environment and systemically, facilitating in the transfer of proteins, cytokines as well as miRNA between cells. The observation that exosomes isolated from immune cells such as dendritic cells (DCs) modulate the immune response has paved the way for these structures to be considered as potential immunotherapeutic reagents.

View Article and Find Full Text PDF

MicroRNA (miRNA) are small, non-coding RNA molecules that have been linked with immunity through regulating/modulating gene expression. A role for these molecules in T-cell and B-cell development and function has been well established. An increasing body of literature now highlights the importance of specific miRNA in dendritic cell (DC) development as well as their maturation process, antigen presentation capacity and cytokine release.

View Article and Find Full Text PDF

DC vaccines have been used to induce tumour-specific cytotoxic T cells . However, this approach to cancer immunotherapy has had limited success. To be successful, injected DCs need to migrate to the LNs where they can stimulate effector T cells .

View Article and Find Full Text PDF

CD4(+)CD25(+)Foxp3(+) Treg cells maintain immunological tolerance. In this study, the possibility that Treg cells control immune responses via the production of secreted membrane vesicles, such as exosomes, was investigated. Exosomes are released by many cell types, including T cells, and have regulatory functions.

View Article and Find Full Text PDF

Modification of allogeneic dendritic cells (DCs) through drug treatment results in DCs with in vitro hallmarks of tolerogenicity. Despite these observations, using murine MHC-mismatched skin and heart transplant models, donor-derived drug-modified DCs not only failed to induce tolerance but also accelerated graft rejection. The latter was inhibited by injecting the recipient with anti-CD8 Ab, which removed both CD8(+) T cells and CD8(+) DCs.

View Article and Find Full Text PDF

There is an increasing body of evidence suggesting that the transfer of preformed MHC class I:peptide complexes between a virus-infected cell and an uninfected APC, termed cross-dressing, represents an important mechanism of Ag presentation to CD8+ T cells in host defense. However, although it has been shown that memory CD8+ T cells can be activated by uninfected dendritic cells (DCs) cross-dressed by Ag from virus-infected parenchymal cells, it is unknown whether conditions exist during virus infection in which naive CD8+ T cells are primed and differentiate to cytolytic effectors through cross-dressing, and indeed which DC subset would be responsible. In this study, we determine whether the transfer of MHC class I:peptide complexes between infected and uninfected murine DC plays a role in CD8+ T cell priming to viral Ags in vivo.

View Article and Find Full Text PDF

Renal ischemia reperfusion injury triggers complement activation, but whether and how the small proinflammatory fragments C3a and C5a contribute to the pathogenesis of this injury remains to be elucidated. Using C3aR-, C5aR-, or C3aR/C5aR-deficient mice and models of renal ischemia-reperfusion injury, we found that deficiency of either or both of these receptors protected mice from injury, but the C3aR/C5aR- and C5aR-deficient mice were most protected. Protection from injury was associated with less cellular infiltration and lower mRNA levels of kidney injury molecule-1, proinflammatory mediators, and adhesion molecules in postischemic kidneys.

View Article and Find Full Text PDF

Regulatory T cells (Tregs) were identified several years ago and are key in controlling autoimmune diseases and limiting immune responses to foreign antigens, including alloantigens. In vivo imaging techniques including intravital microscopy as well as whole body imaging using bioluminescence probes have contributed to the understanding of in vivo Treg function, their mechanisms of action and target cells. Imaging of the human sodium/iodide symporter via Single Photon Emission Computed Tomography (SPECT) has been used to image various cell types in vivo.

View Article and Find Full Text PDF

Intercellular exchange of MHC molecules has been reported between many cells, including professional and nonprofessional APCs. This phenomenon may contribute to T cell immunity to pathogens. In this study, we addressed whether the transfer of MHC class I:peptide complexes between cells plays a role in T cell responses and compare this to conventional cross-presentation.

View Article and Find Full Text PDF

Dendritic cells (DCs) are the major antigen presenting cells capable of stimulating T cell responses following either organ transplantation or a viral infection. In the context of allorecognition, T cells can be activated following presentation of alloantigens by donor DCs (direct), as well as by recipient DCs presenting processed donor major histocompatibility complex (MHC) as peptides (indirect). We have recently described another mechanism by which alloreactive T cells are activated.

View Article and Find Full Text PDF

Fas receptor is constitutively expressed on endothelial cells; however, these cells are highly resistant to Fas-mediated apoptosis. In this study, we examined death-inducing signaling complex (DISC) formation in endothelial cells after Fas receptor stimulation. Nonfunctional DISC formation was observed in human umbilical vein endothelial cells (HUVECs).

View Article and Find Full Text PDF

Interactions of T cells with MHC plus peptide in the peripheral lymphoid system are important for their survival. In this study we investigated further the molecular consequences of such interactions using F5 TCR transgenic mice and peptides previously shown to induce either negative or positive selection in the thymus. Following TCR ligation with the negatively selecting agonist peptide, mature CD8(+) cells proliferated and up-regulated the activation marker CD69.

View Article and Find Full Text PDF