ACS Appl Mater Interfaces
September 2024
Modification of CeO (ceria) with 3d transition metals, particularly iron, has been proven to significantly enhance its catalytic efficiency in oxidation or combustion reactions. Although this phenomenon is widely reported, the nature of the iron-ceria interaction responsible for this improvement remains debated. To address this issue, we prepared well-defined model FeO/CeO(111) catalytic systems and studied their structure and interfacial electronic properties using photoelectron spectroscopy, scanning tunneling microscopy, and low-energy electron diffraction, coupled with density functional theory (DFT) calculations.
View Article and Find Full Text PDFPalladium catalysts are frequently employed in processes where methanol is an energy vector or carrier, being useful for the synthesis of methanol from mixtures of carbon dioxide and hydrogen (CO/H) or its steam reforming on demand. Results of synchrotron-based ambient pressure X-ray photoelectron spectroscopy for the adsorption of methanol on a Pd(111) model catalyst show a rich surface chemistry and complex phenomena that strongly depend on pressure and temperature. At low pressures (<10 Torr) and temperatures (<300 K), CO is the dominant decomposition product.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2022
In this work, we prepared and investigated in ultra-high vacuum (UHV) two stoichiometric CeO(111) surfaces containing low and high amounts of step edges decorated with 0.05 ML of gold using synchrotron-radiation photoelectron spectroscopy (SRPES) and scanning tunneling microscopy (STM). The UHV study helped to solve the still unresolved puzzle on how the one-monolayer-high ceria step edges affect the metal-substrate interaction between Au and the CeO(111) surface.
View Article and Find Full Text PDFUnderstanding how reaction conditions affect metal-support interactions in catalytic materials is one of the most challenging tasks in heterogeneous catalysis research. Metal nanoparticles and their supports often undergo changes in structure and oxidation state when exposed to reactants, hindering a straightforward understanding of the structure-activity relations using only ex situ or ultrahigh vacuum techniques. Overcoming these limitations, we explored the metal-support interaction between gold nanoparticles and ceria supports in ultrahigh vacuum and after exposure to CO.
View Article and Find Full Text PDFIn this work, we investigate ethanol (EtOH)-sensing mechanisms of a ZnO nanorod (NRs)-based chemiresistor using a near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS). First, the ZnO NRs-based sensor was constructed, showing good performance on interaction with 100 ppm of EtOH in the ambient air at 327 °C. Then, the same ZnO NRs film was investigated by NAP-XPS in the presence of 1 mbar oxygen, simulating the ambient air atmosphere and O/EtOH mixture at the same temperature.
View Article and Find Full Text PDF