Publications by authors named "Lesheng Teng"

Osteoporosis is a disease with an increased incidence of fractures due to decreased bone mass and destruction of the microstructure of bone tissue. Salmon calcitonin (sCT), as a peptide, possesses the ability to inhibit osteoclast activity and thus regulate bone metabolism in clinical. However, short half-life and unstable physicochemical properties leading to rapid degradation of sCT have severely limited its clinical application.

View Article and Find Full Text PDF

Cancer research has become increasingly complex over the past few decades as knowledge of the heterogeneity of cancer cells, their proliferative ability, and their tumor microenvironments has become available. Although conventional therapies remain the most compelling option for cancer treatment to date, immunotherapy is a promising way to harness natural immune defenses to target and kill cancer cells. Cell-mediated drug delivery systems (CDDSs) have been an active line of research for enhancing the therapeutic efficacy and specificity of cancer immunotherapy.

View Article and Find Full Text PDF

Cell-based therapies are revolutionizing medicine by replacing or modifying dysfunctional cells with healthy cells or engineered derivatives, offering disease reversal and cure. One promising approach is using cell-derived extracellular vesicles (EVs), which offer therapeutic benefits similar to cell transplants without the biosafety risks. Although EV applications face challenges like limited production, inadequate therapeutic loading, and poor targeting efficiency, recent advances in bioengineering have enhanced their effectiveness.

View Article and Find Full Text PDF

Doxorubicin (DOX) has been an effective antitumor agent for human liver cancer cells; however, an overdose might lead to major side effects appearing in clinical applications. In this work, we present a strategy of combining DOX and blue light (BL) irradiation for the antitumor treatment of HepG2 cells (one typical human liver cancer cell line). It is demonstrated that synergetic DOX and BL can significantly reduce cell proliferation and increase the apoptotic rate of HepG2 cells in comparison to individual DOX treatment.

View Article and Find Full Text PDF
Article Synopsis
  • * The review covers different fabrication techniques for albumin nanoparticles, detailing their advantages and disadvantages.
  • * It also explores various modification strategies and discusses the application of albumin nanoparticles in treating critical diseases.
View Article and Find Full Text PDF

Ginsenoside (GS), one of the main active components in ginseng, can enhance insulin sensitivity, improve the function of islet β cells, and reduce cell apoptosis in the treatment of diabetes. However, the drawbacks of high lipid solubility, poor water solubility, and low oral availability in Ginsenoside Rg3 (G-Rg3) seriously limit further application of GS. In this work, a G-Rg3 PEGylated long-circulating liposome (PEG-L-Rg3) is designed and developed to improve symptoms in type 2 diabetic mice.

View Article and Find Full Text PDF

Human growth hormone (hGH) has emerged as a promising therapeutic agent to prevent and treat skin photoaging. However, the success of hGH therapy largely lies in the availability of an optimal delivery system that enables the efficient delivery of hGH to the dermal layer of the skin. Here, we report a delivery system of hyaluronic acid/liposome-gel-encapsulated hGH (HA/HL-Gel) that can transdermally deliver hGH into the skin for hGH-based photoaging therapy through the upregulation of collagen type I (collagen-I).

View Article and Find Full Text PDF

The recent success of mRNA therapeutics against pathogenic infections has increased interest in their use for other human diseases including cancer. However, the precise delivery of the genetic cargo to cells and tissues of interest remains challenging. Here, we show an adaptive strategy that enables the docking of different targeting ligands onto the surface of mRNA-loaded small extracellular vesicles (sEVs).

View Article and Find Full Text PDF

In recent years, owing to the miniaturization of the fluidic environment, microfluidic technology offers unique opportunities for the implementation of nano drug delivery systems (NDDSs) production processes. Compared with traditional methods, microfluidics improves the controllability and uniformity of NDDSs. The fast mixing and laminar flow properties achieved in the microchannels can tune the physicochemical properties of NDDSs, including particle size, distribution and morphology, resulting in narrow particle size distribution and high drug-loading capacity.

View Article and Find Full Text PDF

Intracellular redox imbalance, achieved by exploiting the tumor microenvironment (TME), has emerged as a promising strategy for cancer therapy. In this study, we developed a multifunctional nanoadjuvant, termed GITFe/Z-HA, by modified a metal-organic backbone Fe/ZIF-8 with hyaluronic acid (HA) targeting. The nanocarriers were loaded with glucose oxidase (Gox), neoindocyanine green (IR820) and tilazamine (TPZ).

View Article and Find Full Text PDF

Deficiency of natural killer (NK) cells shows a significant impact on tumor progression and failure of immunotherapy. It is highly desirable to boost NK cell immunity by upregulating active receptors and relieving the immunosuppressive tumor microenvironment. Unfortunately, mobilization of NK cells is hampered by poor accumulation and short retention of drugs in tumors, thus declining antitumor efficiency.

View Article and Find Full Text PDF

Ginsenoside compound K (GCK) can efficiently treat rheumatoid arthritis (RA) due to its immune and anti-inflammatory functions. However, GCK exists some shortcomings such as poor aqueous solubility, low permeability to the intestinal cell membrane, and serious P-gp efflux, thus limiting its application. In order to solve these problems, a folic acid-targeted drug delivery system based on liposomes (FA-LP-GCK) was developed.

View Article and Find Full Text PDF

Blue light (BL) irradiation has been a potentially efficient treatment for many kinds of tumors. In this study, a BL irradiation (centered at 453 nm in wavelength) was proposed to treat the common human liver cancer cell lines of SMMC-7721 and HepG2, examined by means of flow cytometry, western blot, fluorescence microscope assay. In comparison to control groups, the apoptosis and proliferation inhibition of both BL-treated cells are expressively enhanced by mitochondrial apoptosis.

View Article and Find Full Text PDF

Tumor drug resistance has long been a major challenge in medical oncology. Ferroptosis is a form of regulated cell death with promising clinical applications. However, the efficacy of ferroptosis-inducing agents is often limited by endogenous factors when used alone, and thus, synergistic therapy offers a promising strategy to address this issue.

View Article and Find Full Text PDF

Exosomes (Exos) as drug delivery vehicles have been widely used for cancer immunotherapy owing to their good biocompatibility, low toxicity, and low immunogenicity. Some Exos-based cancer immunotherapy strategies such as tuning of immunosuppressive tumor microenvironment, immune checkpoint blockades, and cancer vaccines have also been investigated in recent years, which all showed excellent therapeutic effects for malignant tumor. Furthermore, some Exos-based drug delivery systems (DDSs) for cancer immunotherapy have also undergone clinic trails, indicating that Exos are a promising drug delivery carrier.

View Article and Find Full Text PDF

The success of messenger RNA therapeutics largely depends on the availability of delivery systems that enable the safe, effective and stable translation of genetic material into functional proteins. Here we show that extracellular vesicles (EVs) produced via cellular nanoporation from human dermal fibroblasts, and encapsulating mRNA encoding for extracellular-matrix α1 type-I collagen (COL1A1) induced the formation of collagen-protein grafts and reduced wrinkle formation in the collagen-depleted dermal tissue of mice with photoaged skin. We also show that the intradermal delivery of the mRNA-loaded EVs via a microneedle array led to the prolonged and more uniform synthesis and replacement of collagen in the dermis of the animals.

View Article and Find Full Text PDF

Cancer remains a severe threat to human health. To date, although various therapeutic methods, including radiotherapy (RT), chemotherapy, chemodynamic therapy (CDT), phototherapy, starvation therapy, and immunotherapy, have entered a new stage of rapid progress in cancer theranostics, their limited therapeutic effect and significant side effects need to be considered carefully. With the rapid development of nanotechnology, the marriage of nanomaterials and therapeutic methods provides the practical possibility to improve the deficiencies in cancer therapy.

View Article and Find Full Text PDF

Purpose: Effective therapy for rheumatoid arthritis (RA) keeps a challenge due to the complex pathogenesis of RA. It is not enough to completely inhibit the process of RA with any single therapy method. The purpose of the research is to compensate for the insufficiency of monotherapy using multiple treatment regimens with different mechanisms.

View Article and Find Full Text PDF

Nano-drug delivery strategies have been highlighted in cancer treatment, and much effort has been made in the optimization of bioavailability, biocompatibility, pharmacokinetics profiles, and distributions of anticancer nano-drug delivery systems. However, problems still exist in the delicate balance between improved anticancer efficacy and reduced toxicity to normal tissues, and opportunities arise along with the development of smart stimuli-responsive delivery strategies. By on-demand responsiveness towards exogenous or endogenous stimulus, these smart delivery systems hold promise for advanced tumor-specificity as well as controllable release behavior in a spatial-temporal manner.

View Article and Find Full Text PDF

Liver fibrosis is the deposition of extracellular matrix (ECM) in the liver caused by persistent chronic injury, which can lead to more serious diseases such as cirrhosis or cancer. Blocking the effect of transforming growth factor β1 (TGF-β1), one of the most important cytokines in liver fibrosis, may be one of the effective ways to inhibit liver fibrosis. As a kind of natural nano-scale vesicles, small extracellular vesicles (sEvs) have displayed excellent delivery vehicle properties.

View Article and Find Full Text PDF

A co-delivery system of SN38 (7-ethyl-10-hydroxyl camptothecin) prodrug and CUR (curcumin) was designed for the treatment of lung cancer by pulmonary delivery. SN38 was linked to cell-penetrating peptide (CPP) TAT via a polyethylene glycol (PEG) linker to form the SN38 prodrug (TAT-PEG-SN38). Liposomes co-loaded with amphiphilic TAT-PEG-SN38 and curcumin (Lip-TAT-PEG-SN38/CUR) were successfully prepared by a microfluidic method for the treatment of lung cancer via pulmonary delivery.

View Article and Find Full Text PDF

As an important means of communication among cells, exosomes are being studied more and more widely, especially in the context of cancer immunotherapy. In the phase of tumor immunoediting, exosomes derived from tumor cells and different immune cells have complex and changeable physiological functions, because they carry different proteins and nucleic acid from the source cells. Based on the role of exosomes in the communication between different cells, cancer treatment methods are also under continuous research.

View Article and Find Full Text PDF

Verbascoside (VB) is a phenylethanoid glycoside extracted from the herbaceous plant and plays a neuroprotective role in Alzheimer's disease (AD). The goal of this study was to explore the neuroprotective mechanism of VB. Based on the proteomics analysis, immunohistochemistry, immunofluorescence, Western blot, and ELISA were utilized to explore the neuroprotective mechanism of VB in context of neuroinflammation in APP/PS1 mice, LPS-induced BV2 cells, and/or Aβ-stimulated N2a cells.

View Article and Find Full Text PDF

Atherosclerosis remains the main cause of death and disability, as well as a leading cause of coronary arterial disease. Inflammation is one of the pathogenic factors of arteriosclerosis; however, the current treatments based on lowering the level of inflammation in the plaque tissue of patients with atherosclerosis are not clinically used. Herein, we hypothesize that αβ receptor affinity and low pH sensitivity may be regarded as a valid therapeutic strategy for targeting sites of atherosclerosis according to the microenvironments of inflammation.

View Article and Find Full Text PDF