Cleavage stimulation factor subunit 2 (CSTF2) is a fundamental factor in the regulation of 3'-end cleavage and alternative polyadenylation of pre-mRNAs. Previous work has identified a tumor-promoting role of CSTF2, suggesting that it may represent a potential therapeutic target. Here, we aimed to elucidate the mechanistic function of CSTF2 in hepatocellular carcinoma (HCC).
View Article and Find Full Text PDFBackground & Aims: The role of solute carrier family 25 member 15 (SLC25A15), a critical component of the urea cycle, in hepatocellular carcinoma (HCC) progression remains poorly understood. This study investigated the impact of SLC25A15 on HCC progression and its mechanisms.
Methods: We systematically investigated the function of SLC25A15 in HCC progression using large-scale data mining and cell, animal, and organoid models.
Mining gene expression data is valuable for discovering novel biomarkers and therapeutic targets in hepatocellular carcinoma (HCC). Although emerging data mining tools are available for pan-cancer-related gene data analysis, few tools are dedicated to HCC. Moreover, tools specifically designed for HCC have restrictions such as small data scale and limited functionality.
View Article and Find Full Text PDFUnlabelled: Long noncoding RNAs (lncRNA) regulate a number of aspects of cancer biology. Recent research has shown that lncRNAs can encode micropeptides that mediate their functions in tumors. Here, we revealed that the liver-specific putative lncRNA, AC115619, is expressed at low levels in hepatocellular carcinoma (HCC) and encodes a micropeptide, designated as AC115619-22aa.
View Article and Find Full Text PDFEmerging evidence has indicated that peroxisome proliferator-activated receptor-gamma coactivator-1α (PPARGC1A) is involved in hepatocellular carcinoma (HCC). However, its detailed function and up- and downstream mechanisms are incompletely understood. In this study, we confirmed that PPAGC1A is lowly expressed in HCC and is associated with poor prognosis using large-scale public datasets and in-house cohorts.
View Article and Find Full Text PDFObjective: Solute carrier (SLC) genes are known to be involved in the development of human tumors. Here, we identified a group of non-small cell lung cancer (NSCLC) - associated SLC genes and explored the role and potential mechanism of action for in NSCLC.
Methods: We used public NSCLC gene expression databases to select NSCLC-associated SLC genes.