The development of alcoholic liver diseases depends on the ability of hepatocyte to proliferate and differentiate in the case of alcohol-induced injury. Our previous work showed an inhibitory effect of alcohol on hepatocyte proliferation. However, the effect of alcohol on hepatocyte differentiation has not yet been precisely characterized.
View Article and Find Full Text PDFNatural polyamines such as putrescine (Put), spermidine (Spd), and spermine (Spm), which are present in the human diet in large amounts, associated with their active transporter, are assumed to play a role in non-heme iron uptake and iron bioavailability from nutrients. Enterocytes and hepatocytes play pivotal roles in the regulation of body iron homeostasis. In this study, we report the effects of natural polyamines on iron transport in the Caco-2 cell line.
View Article and Find Full Text PDFAn occurrence and a magnitude of alcoholic liver diseases depend on the balance between ethanol-induced injury and liver regeneration. Like ethanol, polyamines including putrescine, spermidine, and spermine modulate cell proliferation. Thus, the purpose of this study was to evaluate the relationship between effect of ethanol on hepatocyte (HC) proliferation and polyamine metabolism using the HepaRG cell model.
View Article and Find Full Text PDFIf a new generation of iron chelators specifically devoted for cancer chemotherapy emerged these last years, any of them has not yet been approved at this time. Accordingly, there is a need to optimize new chelating molecules for iron chelation therapy and cancer treatment. So, the objective of the present investigation was to characterize the antiproliferative activity and the iron chelating capacity of the iron chelator S1 [bis-N-(8-hydroxyquinoline-5-ylmethyl)benzylamine].
View Article and Find Full Text PDFBackground: Alcoholism increases the risk of cirrhosis and/or hepatocellular carcinoma development. Iron, like ethanol, modulates the cell growth. However, the relationship between alcohol and iron toward hepatocyte proliferation has not been clearly elucidated.
View Article and Find Full Text PDFCell cycle progression is dependent on the intracellular iron level and chelators can lead to iron depletion and decrease cell proliferation. This antiproliferative effect can be inhibited by exogenous iron. In this work, we present the synthesis of some new synthetic calix[4]arene podands bearing diamino-tetraesters, diamino-tetraalcohols, diamino-tetraacid and tetraaryloxypentoxy groups at the lower rim, designed as potential iron chelators.
View Article and Find Full Text PDFBis-2-(2-hydroxy-phenyl)-thiazole-4-carboxamides and -thiocarboxamides (BHPTCs) form a family of gemini hexacoordinated bis-tridentate chelating scaffolds. Four molecules were synthesized and shown to chelate iron(III) efficiently with a 1:1 stoichiometry. A dithioamide BHPTC displayed promising antiproliferative activity in several cancerous cell lines, making this molecule an interesting lead compound for the design of new iron-chelating anticancer drugs.
View Article and Find Full Text PDFTwo oral chelators, CP20 (deferiprone) and ICL670 (deferasirox), have been synthesized for the purpose of treating iron overload diseases, especially thalassemias. Given their antiproliferative effects resulting from the essential role played by iron in cell processes, such compounds might also be useful as anticancer agents. In the present study, we tested the impact of these two iron chelators on iron metabolism, in the HepaRG cell line which allowed us to study proliferating and differentiated hepatocytes.
View Article and Find Full Text PDFCell cycle progression is dependent on the intracellular iron level, and chelators lead to iron depletion and decrease cell proliferation. This antiproliferative effect can be inhibited by exogenous iron. In this work, we present the synthesis of new synthetic calix[4]arene podands bearing alkyl acid and alkyl ester groups at the lower rim, designed as potential iron chelators.
View Article and Find Full Text PDFObjective: Iron loading has been observed to have a hyperproliferative effect on hepatocytes in vitro and on tumour cells in vivo; removal of this iron being required to induce antitumour activity.
Material And Methods: Antiproliferative effects of orally active tridentate iron chelator ICL670 (deferasirox) and bidentate iron chelator CP20 (deferiprone), mediated through the chelation of intracellular iron, were compared in rat hepatoma cell line FAO and human hepatoma cell line HUH7.
Results: In FAO cell cultures, we have shown that ICL670 decreased cell viability and DNA replication and induced apoptosis more efficiently than an iron-binding equivalent concentration of CP20.
Iron overload diseases are a quickly and deeply changing world, due to major advances in genetics and molecular biology. Five main entities are concerned: a frequent one, namely HFE-related or type1 haemochromatosis, and four rare or exceptional diseases which are types 2, 3 and 4 haemochromatosis and aceruloplasminemia. Increased duodenal iron absorption and enhanced macrophagic iron recycling, both due to hypo-hepcidinemia, account for the development of cellular excess in types 1, 2, 3 haemochromatosis whereas decreased cellular iron egress is the main explanation for type 4 haemochromatosis and aceruloplasminemia.
View Article and Find Full Text PDFNormal iron metabolism is highly regulated and takes a crucial role in the maintenance of cell functions. The plasmatic iron bioavailability control is a key step of this metabolism which involves numerous proteins implicated at various levels, including the digestive iron absorption by enterocytes, and iron release from macrophages. These two phenomenons are modulated in a coordonated fashion by the plasmatic level of hepcidin, a peptide mainly synthetized by the liver, secreted in plasma and modulating the expression of ferroportin, the cellular exporter of iron, and thus the iron egress.
View Article and Find Full Text PDFThe antiproliferative effects of the iron chelator O-trensox and the ornithine-decarboxylase (ODC) inhibitor alpha-difluoromethylornithine (DFMO) were characterized in the rat hepatoma cell line FAO, the rat liver epithelial cell line (RLEC) and the primary rat hepatocyte cultures stimulated by EGF. We observed that O-trensox and DFMO decreased cell viabilty and DNA replication in the three culture models. The cytostatic effect of O-trensox was correlated to a cytotoxicity, higher than for DFMO, and to a cell cycle arrest in G0/G1 or S phases.
View Article and Find Full Text PDFCell cycle progression is dependent on intracellular iron level and chelators lead to iron depletion and decrease cell proliferation. This antiproliferative effect can be inhibited by exogenous iron. In this work, we present the synthesis of new synthetic calix[4]arene podands bearing two aspartic/glutamic acid, ornithine groups or hydrazide function at the lower rim, designed as potential iron chelators.
View Article and Find Full Text PDFBy comparing the antiproliferative effect of the iron chelators ICL670A and O-trensox in the human hepatoma cell line HUH7 and human hepatocyte cultures, we have shown that ICL670A decreased cell viability, inhibited DNA replication and induced DNA fragmentation more efficiently than O-trensox. O-trensox and ICL670A induced a cell cycle blockade in G0-G1 and S phases respectively. In parallel, ICL670A inhibited polyamine biosynthesis by decreasing ornithine decarboxylase and spermidine/spermine N(1)-acetyltransferase activities.
View Article and Find Full Text PDFHFE hemochromatosis is the most frequent genetic iron overload disease. It is linked to the C282Y mutation of the HFE protein, protein encoded by the HFE gene, which is located on chromosome 6. The mechanisms accounting for iron excess are not only digestive hyperabsorption of iron but also excessive recycling of macrophagic iron coming from erythrophagocytosis and secreted into the blood.
View Article and Find Full Text PDFHereditary Hemochromatosis is an autosomal recessive disease, characterized by chronic iron overload. It is mainly due to mutations of the HFE-1 gene. In the large majority of patients, the substitution of tyrosine for cysteine at amino acid 282 (C282Y) is found at the homozygous state.
View Article and Find Full Text PDFPolyamines are ubiquitous molecules, which, like iron, are essential for cell growth. All eukaryotic cells are equipped with a specific polyamine transport system (PTS). Polyamines have primary and secondary amino groups which chelate bivalent metal cations such as Fe and Cu.
View Article and Find Full Text PDFThe present study analyzes the iron mobilization, the cytoprotective, and the antiproliferative effects of the lipophilic hydroxypyridinone CP411, in comparison with the hydrophilic chelator CP20 or deferiprone used in the treatment of iron overload. Primary rat hepatocyte cultures and the rat hepatoma cell line Fao were used. Chelator cell uptake was evaluated by mass spectrometry in the two models.
View Article and Find Full Text PDFFour new hexadendate chelators, three hydroxyquinoline-based, Csox, O-Trensox, Cox750, and one catecholate-based CacCam-which have comparable skeletal structures and pFe, but widely different partition coefficients, (Kpart), 0.01, 0.02, 1 and 3.
View Article and Find Full Text PDFBackgrounds/aims: The effects of iron-depletion on hepatitis B virus (HBV) replication were examined in HepG2.2.15 cells.
View Article and Find Full Text PDFWe investigated the effects of a new iron chelator, O-Trensox (TRX), compared with desferrioxamine (DFO), on proliferation and apoptosis in cultures of the human hepatoblastoma HepG2 and hepatocarcinoma HBG cell lines. Our results show that TRX decreased DNA synthesis in a time- and dose-dependent manner and with a higher efficiency than DFO. Mitotic index was also strongly decreased by TRX and, unexpectedly, DFO inhibited mitotic activity to the same extent as TRX, thus there is a discrepancy between the slight reduction in DNA synthesis and a large decrease in mitotic index after DFO treatment.
View Article and Find Full Text PDFThe effects of irniine, a pyrrolidine alkaloid extracted from the tubers of Arisarum vulgare, on rat hepatocyte primary cultures and rat liver epithelial cell line (RLEC) were studied. Cytotoxicity was first evaluated by LDH release, MTT and NR tests and MDA production, while cellular alterations were visualized by electron microscopy and DNA gel-electrophoresis. In hepatocyte and RLEC cultures, a major toxicity appeared at 40 microM of irniine and was demonstrated by an increase in LDH release and decreases in MTT reduction and NR uptake while concentrations lower than 40 microM did not induce significant changes in these parameters.
View Article and Find Full Text PDFThe cytoprotection and iron mobilization effect of a new dihydroxamate chelator 1,1 bis [(11-N-hydroxy)-2,5,11-triaza-1,6,10-trioxo dodecanyl] ethane or KD was studied in primary rat hepatocyte cultures exposed to iron-citrate. Lactate dehydrogenase (LDH) release and malondialdehyde (MDA) production were measured as indexes of cytotoxicity. Cell viability was evaluated using the [3-(4,5-dimethyl-thiazol-2-yl) 2,5-diphenyl tetrazolium bromide] (MTT) reduction test.
View Article and Find Full Text PDF