Publications by authors named "Lescheid D"

Background: Modifying the acute inflammatory response has wide clinical benefits. Current options include non-steroidal anti-inflammatory drugs (NSAIDs) and therapies that may resolve inflammation. Acute inflammation involves multiple cell types and various processes.

View Article and Find Full Text PDF

Lipid mediators are important regulators in inflammatory responses, and their biosynthetic pathways are targeted by commonly used anti-inflammatory drugs. Switching from pro-inflammatory lipid mediators (PIMs) to specialized pro-resolving (SPMs) is a critical step toward acute inflammation resolution and preventing chronic inflammation. Although the biosynthetic pathways and enzymes for PIMs and SPMs have now been largely identified, the actual transcriptional profiles underlying the immune cell type-specific transcriptional profiles of these mediators are still unknown.

View Article and Find Full Text PDF

Complex diseases are inherently multifaceted, and the associated data are often heterogeneous, making linking interactions across genes, metabolites, RNA, proteins, cellular functions, and clinically relevant phenotypes a high-priority challenge. Disease maps have emerged as knowledge bases that capture molecular interactions, disease-related processes, and disease phenotypes with standardized representations in large-scale molecular interaction maps. Various tools are available for disease map analysis, but an intuitive solution to perform in silico experiments on the maps in a wide range of contexts and analyze high-dimensional data is currently missing.

View Article and Find Full Text PDF

Acute inflammation is a protective reaction by the immune system in response to invading pathogens or tissue damage. Ideally, the response should be localized, self-limited, and returning to homeostasis. If not resolved, acute inflammation can result in organ pathologies leading to chronic inflammatory phenotypes.

View Article and Find Full Text PDF

The Publisher regrets that this article is an accidental duplication of an article that has already been published, https://doi.org/10.1016/j.

View Article and Find Full Text PDF

Bioregulatory systems medicine (BrSM) is a paradigm that aims to advance current medical practices. The basic scientific and clinical tenets of this approach embrace an interconnected picture of human health, supported largely by recent advances in systems biology and genomics, and focus on the implications of multi-scale interconnectivity for improving therapeutic approaches to disease. This article introduces the formal incorporation of these scientific and clinical elements into a cohesive theoretical model of the BrSM approach.

View Article and Find Full Text PDF

Background: Although cardiovascular disease may be partially preventable through dietary and lifestyle-based interventions, few individuals at risk receive intensive dietary and lifestyle counselling. We performed a randomized controlled trial to evaluate the effectiveness of naturopathic care in reducing the risk of cardiovascular disease.

Methods: We performed a multisite randomized controlled trial of enhanced usual care (usual care plus biometric measurement; control) compared with enhanced usual care plus naturopathic care (hereafter called naturopathic care).

View Article and Find Full Text PDF

Molecular variants of GnRH were characterized by reverse-phase, high-performance liquid chromatography from brain extracts of fish in three different orders: Synbranchiformes (swamp eel [Synbranchus marmoratus]), Cyprinidontiformes (platyfish [Xiphophorus maculatus] and green swordtail [X. helleri]), and Atheriniformes (Patagonia pejerrey [Odontesthes hatchery]). Also, pituitary gland extracts from the pejerrey O.

View Article and Find Full Text PDF

To better understand the evolution of pituitary adenylate cyclase-activating polypeptide (PACAP) and growth hormone-releasing hormone (GHRH), we isolated the cDNAs encoding these peptides from the brains of five species of fish: sturgeon, whitefish, grayling, flounder and halibut. Both hormones are encoded in tandem in full-length cDNAs. We compared the phylogenetic relationship among these and other known sequences encoding PACAP.

View Article and Find Full Text PDF

Rat and hamster brain tissues were used to investigate the possible existence of a follicle stimulating hormone (FSH)-releasing factor with similar characteristics to the lamprey gonadotropin-releasing hormone III (lGnRH-III) form proposed in previous reports. The present studies involved isolation and purification of the molecule by high-performance liquid chromatography (HPLC), identification by radioimmunoassay, sequence analysis by automated Edman degradation, mass spectrometry and examination of biological activity. Hypothalamic extracts from both species contained an HPLC fraction that was immunoreactive to GnRH and coeluted with lGnRH-III and 9-hydroxyproline mGnRH ([Hyp(9)]GnRH).

View Article and Find Full Text PDF

Mulberry cells are epidermal gland cells bearing a long basal process resembling a neurite and are tentatively regarded as neurosecretory cells. They occur scattered through the ectoderm of the proboscis, collar, and anterior trunk regions of the acorn worms Saccoglossus, usually in association with concentrations of nervous tissue. They contain secretion granules that appear from electron micrographs to be released to the exterior.

View Article and Find Full Text PDF

The primate brain was thought to contain only the GnRH known as mammalian GnRH (mGnRH). This study investigates whether a second form of GnRH exists within the primate brain. We found that brain extracts from adult stumptail and rhesus monkeys contained two forms of GnRH that were similar to mGnRH and chicken GnRH-II (cGnRH-II) based on the elution position of the peptides from HPLC and on cross-reactivity with antisera that are specific to mammalian or chicken GnRH-II in RIAs.

View Article and Find Full Text PDF

The presence of multiple forms of gonadotropin-releasing hormone (GnRH) within a single brain is common among vertebrate species. In previous studies of reptiles, two forms of GnRH were isolated from the brain of alligators and the primary structure was determined to be that of chicken (c)GnRH-I and cGnRH-II. GnRH has also been detected by indirect methods in other reptiles including turtles, lizards, and snakes.

View Article and Find Full Text PDF

The mammalian form of gonadotropin-releasing hormone (GnRH) was purified from the brains of Russian sturgeon, Acipenser gueldenstaedti, using reversed-phase high pressure liquid chromatography (HPLC). The total concentration of mGnRH within these fish was 5.4 ng/brain.

View Article and Find Full Text PDF