The dripper clogging due to the development of biofilm can reduce the benefits of micro-irrigation technology implementation using reclaimed wastewater. The narrow cross-section and labyrinth geometry of the dripper channel enhance the fouling mechanisms. The aim of this study was to evaluate the water distribution and biofouling of drip irrigation systems at the field scale during irrigation with treated wastewater.
View Article and Find Full Text PDFA simple model is developed for membrane fouling, taking into account two main fouling phenomena: cake formation, due to attached solids on the membrane surface, and pore clogging, due to retained compounds inside the pores. The model is coupled with a simple anaerobic digestion model for describing the dynamics of an anaerobic membrane bioreactor (AnMBR). In simulations, we investigate its qualitative behavior: it is shown that the model exhibits satisfying properties in terms of a flux decrease due to membrane fouling.
View Article and Find Full Text PDFIn this study, we present a novel approach to enhancing the degradation of acetaminophen (ACT) using nanostructured hybrid nanofibers. The hybrid nanofibers were produced by employing both sol-gel and electrospinning methodologies, integrating precise quantities of silver (Ag) and boron nitride (BN) nanosheets into titanium oxide (TiO) nanofibers and halloysite nanotubes (HNT). We extensively examined the morphology, structure, and optical properties of these materials by employing scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy in our analysis.
View Article and Find Full Text PDFThe use of electrocoagulation (EC) and anodic oxidation (AO) processes was studied for improving a treatment system for landfill leachates based on a membrane bioreactor (MBR) and a nanofiltration step. The main limitation of the current full-scale system is related to the partial removal of organic compounds that leads to operation of the nanofiltration unit with a highly concentrated feed solution. Application of the EC before the MBR participated in partial removal of the organic load (40 %) with limited energy consumption (2.
View Article and Find Full Text PDFIt has become necessary to develop effective strategies to prevent and reduce water pollution as a result of the increase in dangerous pollutants in water reservoirs. Consequently, there is a need to design new catalyst materials to promote the efficiency of advanced oxidation processes (AOPs) in the field of wastewater treatment plant to ensure the mineralization of trace organic contaminants. A notable approach gaining attention involves the coupling of sulfate radicals-based AOPs to photocatalysis or electrocatalysis processes, aiming to achieve the complete removal of refractory contaminants into water and carbon dioxide.
View Article and Find Full Text PDFSci Total Environ
November 2023
To investigate the effect of wastewater (WW) treatment on soil bacterial communities, water of different quality was used to irrigate eight lettuces per tank: raw municipal wastewater (RWW), WW treated with an aerated constructed wetland (CWW) and WW treated with a membrane bioreactor (MBW), and tap water (TW). The physicochemical and microbiological characteristics (quality indicators) of these water types were characterized, and the water and soil bacterial communities were monitored by quantitative PCR (qPCR) and 16S rRNA gene sequencing. Despite marked differences in microbial load and diversity of waters, soil communities remained remarkably stable after irrigation.
View Article and Find Full Text PDFThe many pollutants detected in water represent a global environmental issue. Emerging and persistent organic pollutants are particularly difficult to remove using traditional treatment methods. Electro-oxidation and sulfate-radical-based advanced oxidation processes are innovative removal methods for these contaminants.
View Article and Find Full Text PDFThe granular sludge based anaerobic membrane bioreactor (G-AnMBR) has gained emphasis in the last decade by combining AnMBR advantages (high quality permeate and biogas production towards energy positive treatment) and benefits of granular biomass (boosted biological activity and reduced membrane fouling). With the aim to further reduce energy costs, produce higher quality effluent for water reuse applications and improve system efficiency, a forward osmosis (FO) system was integrated into a 17 L G-AnMBR pilot. Plate and frame microfiltration modules were step by step replaced by submerged FO ones, synthetic wastewater was used as feed (chemical oxygen demand (COD) content 500 mg/L), with hydraulic retention time of 10 h and operated at 25 °C.
View Article and Find Full Text PDFMembranes (Basel)
February 2023
In this study, we combined electrospinning of a large amount of halloysite (HNT, 95%) with nitriding to produce N-HNT-TiO composite nanofibers (N-H95T5 hereafter) to be used for acetaminophen (ACT) photodegradation. Investigation of the morphological and structural properties of the obtained materials did not highlight any significant difference in their morphological features and confirmed that nitrogen was evenly distributed in the samples. Photocatalytic tests under visible light showed that acetaminophen photodegraded faster in the presence of samples with nitrogen (N-H95T5) than without (H95T5 nanofibers).
View Article and Find Full Text PDFIn the face of significant challenges to practical applications of photocatalysis for water treatment, recent reports revealed a potential route to overcome a problem posed by dissolved organic matter (DOM). These studies showed that inhibition of photocatalytic processes by DOM is driven largely by competition for active surface sites on TiO or other catalysts, and controlling the type of DOM present in solution could significantly mitigate DOM fouling. Whether or not control of solution parameters could achieve the same preventative action is not known.
View Article and Find Full Text PDFThis study deals with the conversion of organic matter into methane at ambient temperature, during anaerobic digestion of domestic wastewater combined with a submerged ultrafiltration membrane with no gas-sparging. A one-stage submerged granular anaerobic membrane bioreactor (G-AnMBR) and a control anaerobic digester (UASB type) were operated during four months, after 500 days of biomass acclimatization to psychrophilic and low loading rate conditions. Membrane barrier led to the retention of biomass, suspended solids and dissolved and colloidal organic matter which greatly enhanced total COD (tCOD) removal (92.
View Article and Find Full Text PDFThis study aimed to investigate the impact of real MBR effluent pre-ozonation on nanofiltration performances. Nanofiltration experiments were separately run with non-ozonated real MBR effluent, ozonated real MBR effluent and synthetic ionic solution mimicking the ionic composition of the real MBR effluent. The specific UV absorbance and the chemical oxygen demand were monitored during ozonation of real effluent, and the mineralization rate was calculated through the quantitative analysis of dissolved organic carbon.
View Article and Find Full Text PDFThis study demonstrates the application of hollow-fiber membrane contactors (HFMCs) for the recovery of biogas from the ultrafiltration permeate of an anaerobic membrane bioreactor (AnMBR) and synthetic effluents of pure and mixed CH and CO. The developed membrane degassing setup was coupled with a pilot-scale AnMBR fed with synthetic domestic effluent working at 25 °C. The membrane degassing unit was able to recover 93% of the total dissolved CH and 83% of the dissolved CO in the first two hours of permeate recirculation.
View Article and Find Full Text PDFThis research investigated the impact of permeate flux and gas sparging rate on membrane permeability, dissolved and colloidal organic matter (DCOM) rejection and process economics of granular anaerobic membrane bioreactors (AnMBRs). The goal of the study was to understand how membrane fouling control strategies influence granular AnMBR economics. To this end, short- and long-term filtration tests were performed under different permeate flux and specific gas demand (SGD) conditions.
View Article and Find Full Text PDFIn SARS-CoV-2, at the S1/S2 furin cleavage site, a four amino acid insert (P-R-R-A) not found in closely related corona viruses, has been shown to facilitate entry into respiratory epithelial cells and promote virus transmission, infectivity and virulence. By cupric aerosol treatment, complexation of these four amino acids (-P-R-R-A-), at the spike (S) protein site will lead to a conformational change possibly impeding SARS-CoV-2 replication process in the respiratory track. Since these four amino acids yield strong and stable copper complexes, subsequent to a steric hindrance, this complexation will disturb the furin-like protease cleavage at the spike protein site as it has been recently shown in vitro with copper gluconate.
View Article and Find Full Text PDFThe demand for fresh and clean water sources is increasing globally, and there is a need to develop novel routes to eliminate micropollutants and other harmful species from water. Photocatalysis is a promising alternative green technology that has shown great performance in the degradation of persistent pollutants. Titanium dioxide is the most used catalyst owing to its attractive physico-chemical properties, but this semiconductor presents limitations in the photocatalysis process due to the high band gap and the fast recombination of the photogenerated carriers.
View Article and Find Full Text PDFIn the past few years, osmotic membrane systems, such as forward osmosis (FO), have gained popularity as "soft" concentration processes. FO has unique properties by combining high rejection rate and low fouling propensity and can be operated without significant pressure or temperature gradient, and therefore can be considered as a potential candidate for a broad range of concentration applications where current technologies still suffer from critical limitations. This review extensively compiles and critically assesses recent considerations of FO as a concentration process for applications, including food and beverages, organics value added compounds, water reuse and nutrients recovery, treatment of waste streams and brine management.
View Article and Find Full Text PDFElectro-oxidation of acetaminophen (ACT) in three different doped secondary effluents collected from a conventional Municipal Waste Water Treatment Plant (MWWTP), a MWWTP using a membrane bioreactor (WWTP MBR) and a lab-scale MBR treating source-separated urine (Urine MBR) was investigated by electro-Fenton (EF) coupled with anodic oxidation (AO) using sub-stoichiometric titanium oxide anode (TiO). After 8 h of treatment, 90 ± 15%, 76 ± 3.8% and 46 ± 1.
View Article and Find Full Text PDFThe objective of this study was to implement electrochemical advanced oxidation processes (EAOPs) for mineralization and biodegradability enhancement of nanofiltration (NF) concentrate from landfill leachate initially pre-treated in a membrane bioreactor (MBR). Raw carbon felt (CF) or FeFe layered double hydroxides-modified CF were used for comparing the efficiency of homogeneous and heterogeneous electro-Fenton (EF), respectively. The highest mineralization rate was obtained by heterogeneous EF: 96% removal of dissolved organic carbon (DOC) was achieved after 8 h of electrolysis at circumneutral initial pH (pH = 7.
View Article and Find Full Text PDFObjective: To determine whether presence of a bone-anchored annular closure device (ACD) impacts reoperation strategies and subsequent outcomes.
Methods: Patients with large annular defects after single-level limited lumbar discectomy were randomly allocated to receive an ACD or discectomy alone (controls) and were followed for at least 3 years.
Results: Among 550 patients, reoperation risk was lower with ACD (11.
Water shortage, public health and environmental protection are key motives to treat wastewater. The widespread adoption of wastewater as a resource depends upon development of an energy-efficient technology. Anaerobic membrane bioreactor (AnMBR) technology has gained increasing popularity due to their ability to offset the disadvantages of conventional treatment technologies.
View Article and Find Full Text PDFThe use of anaerobic membrane bioreactor technology (AnMBR) is rapidly expanding. However, depending on the application, AnMBR design and operation is not fully mature, and needs further research to optimize process efficiency and enhance applicability. This paper reviews state-of-the-art of AnMBR focusing on modelling and control aspects.
View Article and Find Full Text PDFBackground: Minimally invasive techniques for lumbar discectomy have been recommended as superior to open techniques due to lower blood loss, lower rates of infection and shorter recovery. There are, however, concerns that this approach does not sufficiently remove the herniated nuclear material, thus leaving the patient susceptible to reherniation requiring reoperation. The purpose of this study was to examine the safety and viability of an annular closure device in limiting reherniation and reoperation in a cohort of patients undergoing minimally invasive lumbar discectomy with the assistance of an annular closure device.
View Article and Find Full Text PDFBreweries release significant amounts of wastewater loaded with various organic and mineral materials. Prior studies of membrane bioreactor (MBR) wastewater treatment have been conducted with very little interest granted to the conditions of biomass acclimation. This study displays biomass behavior during brewery wastewater treatment by an aerobic MBR.
View Article and Find Full Text PDFBackground: In 2014-2015, 242 individuals aged 2-89 years were newly diagnosed with human immunodeficiency virus type 1 (HIV-1) in Roka, a rural commune in Cambodia. A case-control study attributed the outbreak to unsafe injections. We aimed to reconstruct the likely transmission history of the outbreak.
View Article and Find Full Text PDF