Drug-delivery systems based on polymeric nanoparticles are useful for improving drug bioavailability and/or delivery of the active ingredient for example directly to the cancerous tumour. The physical and chemical characterization of a functionalized nanoparticle system is required to measure drug loading and dispersion but also to understand and model the rate and extent of drug release to help predict performance. Many techniques can be used, however, difficulties related to structure determination and identifying the precise location of the drug fraction make mathematical prediction complex and in many published examples the final conclusions are based on assumptions regarding an expected structure.
View Article and Find Full Text PDFWe have employed for the first time Raman spectroscopic imaging along with multi-variate curve resolution (MCR) analysis to investigate in real time and in-situ the dissolution mechanisms that underpin amorphous solid dispersions, with data being collected directly from the dosage form itself. We have also employed a novel rotating disk dissolution rate (RDDR) methodology to track, through the use of high-performance liquid chromatography (HPLC), the dissolution trends of both drug and polymer simultaneously in multi-component systems. Two formulations of poorly water-soluble felodipine in a polymeric matrix of copovidone VA64 which have different drug loadings of 5% and 50% w/w were used as models with the aim of studying the effects of increasing the amount of active ingredient on the dissolution performance.
View Article and Find Full Text PDFWe have investigated the dissolution mechanisms of spray-dried amorphous solid dispersions of the poorly water-soluble drug felodipine and the water-soluble polymer copovidone using a new combined spectrophotometric and magnetic resonance imaging technique and a mathematical modelling approach. Studies of the dissolution rates of both uncompacted and compacted solid dispersions revealed that compaction leads to a significant decrease in the rate and extent of dissolution and a strong dependence on drug loading, especially for the uncompacted samples. Low drug-loaded compacts [5% and 15% (w/w) felodipine] eroded with linear kinetics at identical rates, pointing to matrix control, whereas for compacts containing a higher proportion of felodipine (≥ 30%, w/w), dissolution performance was dominated by the drug.
View Article and Find Full Text PDFThe effects of incorporating an amorphous decapeptide in PLGA on the cooperative and local motions of the polymer chains have been evaluated. Whereas assessment of the bulk properties is used traditionally for studies of host-guest interactions, there are only rare examples where molecular-level understanding of such amorphous host-guest systems has been sought. Moreover, addressing the mechanism of interactions and stabilisation of a drug in a polymeric network is a key factor for the achievement of reproducibility of the formulations and ultimately the preparation of composites able to deliver drugs with consistency.
View Article and Find Full Text PDF