An electron beam position and angle monitoring system, ps-BPM, has been shown to be able to measure the electron source position and angle at a single location in a beamline at a synchrotron source. This system uses a monochromator to prepare a photon beam whose energy is at that of the K-edge of an absorber filter. The divergence of the beam from the source gives an energy range that will encompass the K-edge of the filter.
View Article and Find Full Text PDFThe stability of the photon beam position on synchrotron beamlines is critical for most if not all synchrotron radiation experiments. The position of the beam at the experiment or optical element location is set by the position and angle of the electron beam source as it traverses the magnetic field of the bend-magnet or insertion device. Thus an ideal photon beam monitor would be able to simultaneously measure the photon beam's position and angle, and thus infer the electron beam's position in phase space.
View Article and Find Full Text PDFWe produced coherent synchrotron radiation at the Canadian Light Source between about 5 and 30 cm(-1) in bursting and continuous emission modes and used it to acquire photoacoustic spectra of solids. A band was observed in the spectrum of α-lactose monohydrate at 18 cm(-1) and attributed to a rotational mode, in agreement with published data obtained using other numerical and experimental techniques.
View Article and Find Full Text PDF