The design and synthesis of a novel series of 2,6-disubstituted pyrazine derivatives as CK2 kinase inhibitors is described. Structure-guided optimization of a 5-substituted-3-thiophene carboxylic acid screening hit (3a) led to the development of a lead compound (12b), which shows inhibition in both enzymatic and cellular assays. Subsequent design and hybridization efforts also led to the unexpected identification of analogs with potent PIM kinase activity (14f).
View Article and Find Full Text PDFPolycomb repressive complex 2 (PRC2) has been shown to play a major role in transcriptional silencing in part by installing methylation marks on lysine 27 of histone 3. Dysregulation of PRC2 function correlates with certain malignancies and poor prognosis. EZH2 is the catalytic engine of the PRC2 complex and thus represents a key candidate oncology target for pharmacological intervention.
View Article and Find Full Text PDFThe biological role played by non-BET bromodomains remains poorly understood, and it is therefore imperative to identify potent and highly selective inhibitors to effectively explore the biology of individual bromodomain proteins. A ligand-efficient nonselective bromodomain inhibitor was identified from a 6-methyl pyrrolopyridone fragment. Small hydrophobic substituents replacing the N-methyl group were designed directing toward the conserved bromodomain water pocket, and two distinct binding conformations were then observed.
View Article and Find Full Text PDFThe discovery and optimization of a series of small molecule EZH2 inhibitors is described. Starting from dimethylpyridone HTS hit (2), a series of indole-based EZH2 inhibitors were identified. Biochemical potency and microsomal stability were optimized during these studies and afforded compound 22.
View Article and Find Full Text PDFThe histone lysine methyltransferase (MT) Enhancer of Zeste Homolog 2 (EZH2) is considered an oncogenic driver in a subset of germinal center B-cell-like diffuse large B cell lymphoma (GCB-DLBCL) and follicular lymphoma due to the presence of recurrent, monoallelic mutations in the EZH2 catalytic domain. These genomic data suggest that targeting the EZH2 MT activity is a valid therapeutic strategy for the treatment of lymphoma patients with EZH2 mutations. Here we report the identification of highly potent and selective EZH2 small molecule inhibitors, their validation by a cellular thermal shift assay, application across a large cell panel representing various non-Hodgkin's lymphoma (NHL) subtypes, and their efficacy in EZH2mutant-containing GCB-DLBCL xenograft models.
View Article and Find Full Text PDFA method for the synthesis of N-functionalized C2-/C3-substituted indoles via Pd-catalyzed C-N bond coupling of halo-aryl enamines is described. The general strategy utilizes a variety of amines and β-keto esters which are elaborated into halo-aryl enamines as latent precursors to indoles. The preferred conditions comprising the RuPhos precatalyst and RuPhos in the presence of NaOMe in 1,4-dioxane tolerate a variety of substituents and are scalable for the construction of indoles in multigram quantities.
View Article and Find Full Text PDFUpregulation of Pim kinases is observed in several types of leukemias and lymphomas. Pim-1, -2, and -3 promote cell proliferation and survival downstream of cytokine and growth factor signaling pathways. AZD1208 is a potent, highly selective, and orally available Pim kinase inhibitor that effectively inhibits all three isoforms at <5 nM or <150 nM in enzyme and cell assays, respectively.
View Article and Find Full Text PDFA novel series of small-molecule inhibitors has been developed to target the double mutant form of the epidermal growth factor receptor (EGFR) tyrosine kinase, which is resistant to treatment with gefitinib and erlotinib. Our reported compounds also show selectivity over wild-type EGFR. Guided by molecular modeling, this series was evolved to target a cysteine residue in the ATP binding site via covalent bond formation and demonstrates high levels of activity in cellular models of the double mutant form of EGFR.
View Article and Find Full Text PDFThe potent and selective 3-amido-4-anilinoquinoline CSF-1R inhibitor AZ683 suffered from cardiovascular liabilities, which were linked to the off-target activities of the compound and ion channel activity in particular. Less basic and less lipophilic examples from both the quinoline and cinnoline series demonstrated cleaner secondary pharmacology profiles. Cinnoline 31 retained the required potency and oral PK profile, and was progressed through the safety screening cascade to be nominated into development as AZD7507.
View Article and Find Full Text PDFNovel substituted benzylidene-1,3-thiazolidine-2,4-diones (TZDs) have been identified as potent and highly selective inhibitors of the PIM kinases. The synthesis and SAR of these compounds are described, along with X-ray crystallographic, anti-proliferative, and selectivity data.
View Article and Find Full Text PDFCell-based subset screening of compounds using a Gli transcription factor reporter cell assay and shh stimulated cell differentiation assay identified a series of bisamide compounds as hedgehog pathway inhibitors with good potency. Using a ligand-based optimization strategy, heteroaryl groups were utilized as conformationally restricted amide isosteres replacing one of the amides which significantly increased their potency against SMO and the hedgehog pathway while decreasing activity against p38α kinase. We report herein the identification of advanced lead compounds such as imidazole 11c and 11f encompassing good p38α selectivity, low nanomolar potency in both cell assays, excellent physiochemical properties and in vivo pharmacokinetics.
View Article and Find Full Text PDF3-Amido-4-anilinocinnolines have been identified as potent and highly selective inhibitors of CSF-1R. The synthesis and SAR of these compounds is reported, along with some physical property, pharmacokinetic and kinase selectivity data.
View Article and Find Full Text PDFThe optimization of compounds from the 3-amido-4-anilinoquinolines series of CSF-1R kinase inhibitors is described. The series has excellent activity and kinase selectivity. Excellent physical properties and rodent PK profiles were achieved through the introduction of cyclic amines at the quinoline 6-position.
View Article and Find Full Text PDFA series of amidoheteroaryl compounds were designed and synthesized as inhibitors of B-Raf kinase. Several compounds from the series show excellent potency in biochemical, phenotypic and mode of action cellular assays. Potent examples from the series have also demonstrated good plasma exposure following an oral dose in rodents and activity against the Ras-Raf pathway in tumor bearing mice.
View Article and Find Full Text PDFBioorg Med Chem Lett
September 2008
The bisamide class of kinase inhibitors was identified as being active against CSF-1R. The synthesis and SAR of pyridyl and thiazolyl bisamides are reported, along with the pharmacokinetic properties and in vivo activity of selected examples.
View Article and Find Full Text PDFMethylphenidate analogues, in which the carbomethoxy has been replaced by an alkyl group and with different phenyl substituents, have been synthesized and tested in monoamine transporter assays. As predicted from a pharmacophore model, most of the RR/SS diastereomers showed high potency as dopamine reuptake inhibitors. Analogues with a 4-chlorophenyl group and an unbranched initial alkyl atom had consistently enhanced selectivity for the dopamine transporter.
View Article and Find Full Text PDFComplete details of an asymmetric synthesis of leucascandrolide A (1) are described. The synthesis highlights the use of two diastereoselective [4 + 2]-annulations for the assembly of the functionalized bispyranyl macrolide 3. An efficient assembly and union of the oxazole-containing side chain 4 with macrolide 3 was carried out using a Mitsunobu reaction.
View Article and Find Full Text PDFIn an effort to produce compounds with longer durations of action, we attempted to synthesize ketone analogs of methylphenidate which, however, appear to be highly unstable due to a highly acidic proton alpha to the ketone and phenyl groups. Nevertheless, vinylogous amide by products have been synthesized and tested for activity at dopamine, norepinephrine, and serotonin transporters. The compounds were found to be weak inhibitors of monoamine reuptake despite rigid three dimensional structures that are quite similar to the global minimum of threo-(R,R)-methylphenidate.
View Article and Find Full Text PDF[reaction: see text] The asymmetric synthesis of a C1-C22 fragment (2) of leucascandrolide A is described. Synthetic highlights include the construction of the C9-C22 pyran fragment using a formal [4 + 2]-annulation of a chiral organosilane. A diastereoselctive Mukaiyama aldol was used to introduce the C9 stereocenter and complete the assembly of the macrocycle's carbon skeleton.
View Article and Find Full Text PDF[reaction: see text] This paper describes the development of a useful procedure for the removal of thioacetals and thioketals using Dess-Martin periodinane (DMP) reagent. In contrast to existing methods, this protocol offers general reactivity, compatibility with a wide range of functional groups, and convenient reaction times. Also discussed are chemoselectivity experiments involving functionalities that may be subject to oxidation by DMP, qualitative effects of substrate on hydrolysis rate, and direct thioacetal to acetal conversions.
View Article and Find Full Text PDFAn efficient, convergent synthesis of the C1'-C11' side chain (3) of leucascandrolide A (1) has been achieved. The key bond connection is made through the use of a palladium(0)-catalyzed Sonogashira cross-coupling between trifloyl oxazole (4) and alkynylmetal species (5).
View Article and Find Full Text PDF[reaction: see text] This paper describes Sonogashira cross-coupling of functionalized 2-, 4-, and 5-trifloyl oxazoles and thiazoles with terminal alkynes. This methodology has been extended to 2,4-ditrifloylthiazoles, which results in regioselective cross-coupling at the C2-position of the thiazole. The resulting 2-alkynyl-4-trifloylthiazoles are effective electrophiles in a second palladium(0)-mediated cross-coupling reaction.
View Article and Find Full Text PDF