Whole genome sequencing of the response of Porphyromonas gingivalis W83 to hydrogen peroxide revealed an upregulation of several uncharacterized, novel genes. Under conditions of prolonged oxidative stress in P. gingivalis, increased expression of a unique transcriptional unit carrying the grpE, dnaJ and three other hypothetical genes (PG1777, PG1778 and PG1779) was observed.
View Article and Find Full Text PDFBackground: While the oral cavity harbors more than 680 bacterial species, the interaction and association of selected bacterial species play a role in periodontal diseases. Bacterial species including , and , a consortium previously designated as the " is now being expanded to include other new emerging pathogens that are significantly associated with periodontal disease.
Highlight: In addition to novel mechanisms for oxidative resistance of individual species, community dynamics may lead to an overall strategy for survival in the inflammatory environment of the periodontal pocket.
As an anaerobe, Porphyromonas gingivalis is significantly affected by the harsh inflammatory environment of the periodontal pocket during initial colonization and active periodontal disease. We reported previously that the repair of oxidative stress-induced DNA damage involving 8-oxo-7,8-dihydroguanine (8-oxoG) may occur by an undescribed mechanism in P. gingivalis.
View Article and Find Full Text PDFPorphyromonas gingivalis, a black-pigmented, Gram-negative anaerobe, is an important etiologic agent of periodontal disease. The harsh inflammatory condition of the periodontal pocket implies that this organism has properties that will facilitate its ability to respond and adapt to oxidative stress. Because the stress response in the pathogen is a major determinant of its virulence, a comprehensive understanding of its oxidative stress resistance strategy is vital.
View Article and Find Full Text PDFThe persistence of Porphyromonas gingivalis in the inflammatory environment of the periodontal pocket requires an ability to overcome oxidative stress. DNA damage is a major consequence of oxidative stress. Unlike the case for other organisms, our previous report suggests a role for a non-base excision repair mechanism for the removal of 8-oxo-7,8-dihydroguanine (8-oxo-G) in P.
View Article and Find Full Text PDF