Publications by authors named "Lereu A"

Total internal reflection fluorescence microscopy (TIRF-M) is widely used in biological imaging. Evanescent waves, generated at the glass-sample interface, theoretically strongly improve the axial resolution down to a hundred of nanometers. However, objective based TIRF-M suffers from different limitations such as interference fringes and uneven illumination, mixing both propagating and evanescent waves, which degrade the image quality.

View Article and Find Full Text PDF

Since the established correlations between mechanical properties of a piece of wood at the macroscopic scale and those of the cell wall at the submicron scale, techniques based on atomic force microscopy (AFM) have become widespread. In particular Peak Force tapping, allowing the differentiation of various layers, has become the new standard for wood cell wall's nanomechanical characterization. However, its use requires fully elastic indentation, a good knowledge of stiffness of the probe and assumes a perfect tip shape of known radius (sphere) or angle (cone).

View Article and Find Full Text PDF

Alternative energy strategies based on plant biomass-derived bioenergy and biofuels rely on understanding and optimization of plant structure, chemistry, and performance. Starch, a constitutive element of all green plants, is important to food, biofuels, and industrial applications. Models of carbohydrate storage granules are highly heterogeneous in representing morphology and structure, though a deeper understanding of the role of structure in functional behavior is emerging.

View Article and Find Full Text PDF

In photonics and emerging fields of quantum and topological materials, increasing demands are placed upon the state and control of electromagnetic fields. Dielectric multilayer materials may be designed and optimized to possess extremely sharp spectral and angular photonic resonances allowing for the creation of fields orders of magnitude larger than the exciting field. With enhancements of 10 and higher, the extreme nature of these resonances places high constraints on the statistical properties of the physical and optical characteristics of the materials.

View Article and Find Full Text PDF

Dielectric multilayers, when properly optimized, have been shown to sustain giant optical field enhancement directly linked to the imaginary index of the materials. Such giant optical field is of great interests to increase tremendously the sensitivity of optoelectronic systems. Unfortunately, this ultra-sensitive system is also highly depending on the illumination conditions.

View Article and Find Full Text PDF

The complex organic polymer, lignin, abundant in plants, prevents the efficient extraction of sugars from the cell walls that is required for large scale biofuel production. Because lignin removal is crucial in overcoming this challenge, the question of how the nanoscale properties of the plant cell ultrastructure correlate with delignification processes is important. Here, we report how distinct molecular domains can be identified and how physical quantities of adhesion energy, elasticity, and plasticity undergo changes, and whether such quantitative observations can be used to characterize delignification.

View Article and Find Full Text PDF

Multidielectric coatings are analytically designed to reach total absorption and maximum field enhancement at resonances. A resonant multi-dielectric stack was fabricated to be resonant at 633 nm for an incidence of 45° under TE-polarization. Field enhancement was expected to be around 1000.

View Article and Find Full Text PDF

Single-particle interactions hold the promise of nanometer-scale devices in areas such as data communications and storage, nanolithography, waveguides, renewable energy and therapeutics. We propose that the collective electronic properties possessed by noble metal nanoparticles may be exploited for device actuation via the unapparent mechanism of plasmon-assisted heat generation and flux. The temperature dependence of the dielectric function and the thermal transport properties of the particles play the central role in the feasibility of the thermally-actuated system, however the behavior of these thermoplasmonic processes is unclear.

View Article and Find Full Text PDF

The polarization dependence of the optical scattering properties of two-dimensional arrays of metal nanostructures with sub-wavelength dimensions (nanoantennas) has been investigated. Arrays of 500 nm × 100 nm gold nanorods covering a 100 × 100 µm(2) area were fabricated with varying orientations on an electrically conductive substrate. The experimental and computational analysis of the angularly organized nanorods suggest potential use toward the development of an integrated polarimeter.

View Article and Find Full Text PDF

The study of the spatially resolved physical and compositional properties of materials at the nanoscale is increasingly challenging due to the level of complexity of biological specimens such as those of interest in bioenergy production. Mode synthesizing atomic force microscopy (MSAFM) has emerged as a promising metrology tool for such studies. It is shown that, by tuning the mechanical excitation of the probe-sample system, MSAFM can be used to dynamically investigate the multifaceted complexity of plant cells.

View Article and Find Full Text PDF

Metal-dielectric transitions are important structures that can display a host of optical characteristics including excitation of plasmons. Metal-dielectric discontinuities can furthermore support plasmon excitation without a severe condition on the incident angle of the exciting photons. Using a semi-infinite thin gold film, we study surface plasmon (SP) excitation and the associated electromagnetic near-field distribution by recording the resulting plasmon interference patterns.

View Article and Find Full Text PDF

Optical techniques that permit nondestructive probing of interfacial dynamics of various media are of key importance in numerous applications such as ellipsometry, mirage effect, and all-optical switching. Characterization of the various phases of microjet droplet formation yields important information for volume control, uniformity, velocity, and rate. The ringing of the meniscus and the associated relaxation time that occurs after droplet breakoff affect subsequent drop formation and is an indicator of the physical properties of the fluid.

View Article and Find Full Text PDF

Plasmon resonances in 3D nanoparticle arrangements can produce strong localized optical fields, which are of importance for any application involving interaction of light with subwavelength volumes of matter down to the molecular level. In particular, remarkable field enhancement and confinement occur in a dimer geometry formed by two identical closely spaced particles. Although, recent advances in nanofabrication have rendered the fabrication of complex plasmon architectures more accessible, addressing their local fields in a nonperturbative fashion remains not straightforward, because metallic nanostructures are rather sensitive to their local environment.

View Article and Find Full Text PDF

We present an implementation of pure-time-delay generation in analog signals located in the kilo-Hertz frequency band. The controlled constant delays that are produced engage in a feedback system to investigate the dynamic response of microcantilevers. Delayed systems offer a vast richness of eigenvalues resulting in the possibility of excitations at frequencies other than that of the fundamental mode.

View Article and Find Full Text PDF

When a liquid droplet experiences a temperature inhomogeneity along its bounding surface, a surface energy gradient is engendered, which when, in a continuous sense, exceeding a threshold, results in a convective flow dissipating the energy. If the associated temperature gradients are sustained by the interface between the liquid and a supporting substrate, the induced flow can result in the lateral motion of the droplet overcoming the viscosity and inertia. Recently, pico-liter adsorbed and applied droplets were shown experimentally to be transported, and divided by the decay of optically excited surface plasmons into phonons in a thin gold foil.

View Article and Find Full Text PDF

We present experimental results from an all-optical microfluidic platform that may be complimented by a thin film all-electrical network. Using these configurations we have studied the microfluidic convective flow systems of silicone oil, glycerol, and 1,3,5-trinitrotoluene on open surfaces through the production of surface tension gradients derived from thermal gradients. We show that sufficient localized thermal variation can be created utilizing surface plasmons and/or engaging individually addressable resistive thermal elements.

View Article and Find Full Text PDF

A form of optical modulation at low pulse rates is reported in the case of surface plasmons excited by 1.55-microm photons in a thin gold foil. Several visible-photon energies are shown to be pulsed by the action of the infrared pulses, the effect being maximized when each visible beam also excites surface plasmons.

View Article and Find Full Text PDF

The interference of surface plasmons can provide important information regarding the surface features of the hosting thin metal film. We present an investigation of the interference of optically excited surface plasmons in the Kretschmann configuration in the visible spectrum. Large area surface plasmon interference regions are generated at several wavelengths and imaged with the photon scanning tunneling microscope.

View Article and Find Full Text PDF