Coordinating the interfacial interaction between Pt-based nanoparticles (NPs) and supports is a significant strategy for the modulation of d-orbital electronic configuration and the adsorption behaviors of intermediates, which is of critical importance for boosting electrocatalytic performance. Herein, we demonstrated a specific synergy effect between the ordered PtFe intermetallic and neighboring oxygen vacancies (Ov), which provides an "ensemble reaction pool" to balance the barriers of both the activity, stability, and CO poisoning issues for the methanol oxidation reaction (MOR). In our proposed "ensemble reaction pool", the deprotonation of methanol occurs on the Pt site to form the intermediate *CO, where the strain derived from the PtFe intermetallic could alter the d-orbital electronic configuration of Pt, intrinsically weakening the *CO adsorption energy, and Ov in CeO promote hydroxyl species (*OH) adsorption, which will react with *CO, facilitating the dissociative adsorption of *CO, thus cooperatively enhancing the performance of MOR.
View Article and Find Full Text PDFRegulating the chemical environment of materials to optimize their electronic structure, leading to the optimal adsorption energies of intermediates, is of paramount importance to improving the performance of electrocatalysts, yet remains an immense challenge. Herein, we design a harmonious axial-coordination Pt Fe/FeNCCl catalyst that integrates a structurally ordered PtFe intermetallic with an orbital electron-delocalization FeNCCl support for synergistically efficient oxygen reduction catalysis. The obtained PtFe/FeNCCl with a favorable atomic arrangement and surface composition exhibits enhanced oxygen reduction reaction (ORR) intrinsic activity and durability, achieving a mass activity (MA) and specific activity (SA) of 1.
View Article and Find Full Text PDFCrystal structure engineering in nanoparticles has been regarded as a vital method in catalyst development and design. Herein, PtFe nanocubes, manufactured with ordered PtFe intermetallic structure and a desired facet of {202}, have been successfully prepared via the combination of selective deposition strategy and spatial barrier effect. In-situ X-ray photoelectron spectroscopy found that the growth of the high-index facet and formation of the nanocube for o-PtFe-202 materials arise from the surface Fe modification stabilized effect and the selective deposition of Cl, respectively.
View Article and Find Full Text PDF