Decabromodiphenyl ether (BDE-209), a frequently used brominated flame retardant, readily enters the environment and is difficult to degrade with bioaccumulation. BDE-209 could cause male reproductive toxicity, but the regulatory functions of Sertoli cells-secreted factors remain uncertain. In present study, male mice were treated with 75 mg/kg BDE-209 and then stopped exposure for 50 days.
View Article and Find Full Text PDFExposure to silica nanoparticles (SiNPs) could causally contribute to malfunctioning of the spermatogenesis, but the underlying mechanism is rarely known. This study was designed to explore the mechanism of Crem hypermethylation in SiNP-induced reproductive toxicity. The male mice were exposure to SiNPs (0 and 20 mg/kg·bw) once every 5 days via intratracheal instillation for 35 days.
View Article and Find Full Text PDFThe environmental presence of decabromodiphenyl ether (BDE-209), which is toxic to the male reproductive system, is widespread. The current study investigated its mechanism of toxicity in mice. The results showed, that BDE-209 induced DNA damage, decreased the expression of the promoter of meiosis spermatogenesis- and oogenesis-specific basic helix-loop-helix 1 (Sohlh1), meiosis related-factors Lethal (3) malignant brain tumor like 2 (L3MBTL2), PIWI-like protein 2 (MILI), Cyclin-dependent kinase 2 (CDK2), Cyclin A, synaptonemal complex protein 1 (SYCP1) and synaptonemal complex protein 3 (SYCP3), and caused spermatogenic cell apoptosis, resulting in a decrease in sperm quantity and quality.
View Article and Find Full Text PDFEcotoxicol Environ Saf
April 2023
Decabromodiphenyl ether (BDE-209) is an environmental toxin. Increasing evidence showed that BDE-209 exposure induced liver injury, but the mechanism still remains unknown. The present study explored the effect and mechanism of ferroptosis on hepatotoxicity triggered by BDE-209 in vivo and in vitro.
View Article and Find Full Text PDFPast studies have observed that decabromodiphenyl ether (BDE-209) induces reproductive and developmental toxicity, but the specific mechanism remains unclear. Based on our previous work, male mice were orally given BDE-209 at 75 mg/kg/d via continuous exposure for one spermatozoon development period (50 days) and then stopping exposure for another 50 days. The mouse spermatocyte line GC-2spd was used to examine the toxic effects of BDE-209 on histone methylation and spermatogenesis.
View Article and Find Full Text PDFSilica nanoparticles (SiNPs) suppressed spermatogenesis leading to male reproductive toxicity, while the precise mechanism remains uncertain. Here, this study explored the role of miR-450b-3p in male reproductive toxicity induced by SiNPs. In vivo study, we found that SiNPs caused apoptosis of spermatocytes, decreased quantity and quality of sperms, up-regulated the cytoskeleton proteins (Layilin, Talin, and Vinculin), activated the Hippo pathway (Rho A, Yap, and p73), downregulated the expression of miR-450b-3p, damaged the compactness and density of desmosomes between spermatocytes and the basal of the testis.
View Article and Find Full Text PDFSelenium (Se) is a vital microelement for spermatogenesis and male fertility. The aim of this study was to investigate the effects of Se on the male reproductive function and possible mechanisms. Fourty male mice were randomly divided into 0, 0.
View Article and Find Full Text PDFParticulate Matter 2.5 (PM) disrupts endocrine functions and may negatively affect sperm quality and quantity in males; however, the long-term effects and potential mechanisms of this effect are unknown. This study aimed to investigate the epigenetic mechanism of maternal exposure to PM-induced inhibin B hypermethylation in male offspring.
View Article and Find Full Text PDFDecabromodiphenyl ethane (DBDPE) is a major alternative to BDE-209 owing to its lower toxicity. However, the mass production and increased consumption of DBDPE in recent years have raised concerns related to its adverse health effects. However, the effect and mechanism of DBDPE on cardiotoxicity have rarely been studied.
View Article and Find Full Text PDFBDE-209 is the most prevalent congener of polybrominated diphenyl ethers and has high bioaccumulation in humans and animals. BDE-209 has been reported to disrupt glycolipid metabolism, but the mechanisms are still unclear. In this study, we found that BDE-209 induced liver tissue injury and hepatotoxicity, increased the glucose and total cholesterol levels in the serum of rats, and increased glucose and triglyceride levels in L-02 cells.
View Article and Find Full Text PDFDecabromodiphenyl ether (BDE-209), an extensively used flame retardant, exists widely in the environment. Although male reproductive toxicity induced by BDE-209 has been reported, its mechanisms remain unclear. To explore the role of glycolipid metabolism in male reproductive toxicity and the potential mechanisms, forty male SD rats were divided into four groups and given gavage with BDE-209 at 0, 5, 50, and 500 mg/kg/d for 28 days.
View Article and Find Full Text PDFDecabrominated diphenyl ether (BDE-209) is generally utilized in multiple polymer materials as common brominated flame retardant. BDE-209 has been listed as persistent organic pollutants (POPs), which was considered to be reproductive toxin in the environment. But it still remains unclear about the effects of BDE-209 on DNA methylation and the induced-male reproductive toxicity.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
August 2021
Silica nanoparticles (SiNPs), which are the main inorganic components of atmospheric particulate matter, have been proved to have certain male reproductive toxicity in previous studies. Spermatogenesis involves complex epigenetic regulation, but it is still unclear if SiNPs exposure will interfere with the DNA methylation patterns in mouse spermatocytes. The present study was designed to investigate the effects of SiNPs on DNA methylation in the mouse spermatocyte GC-2spd(ts).
View Article and Find Full Text PDFSilica nanoparticles (SiNPs) could cause reproductive toxicity. The role of miRNAs in reproductive toxicity induced by SiNPs is still ambiguous. The present study was designed to investigate the role of miRNA-450 b-3p.
View Article and Find Full Text PDF