BACKGROUNDPatients hospitalized for COVID-19 exhibit diverse clinical outcomes, with outcomes for some individuals diverging over time even though their initial disease severity appears similar to that of other patients. A systematic evaluation of molecular and cellular profiles over the full disease course can link immune programs and their coordination with progression heterogeneity.METHODSWe performed deep immunophenotyping and conducted longitudinal multiomics modeling, integrating 10 assays for 1,152 Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC) study participants and identifying several immune cascades that were significant drivers of differential clinical outcomes.
View Article and Find Full Text PDFThe disparity in genetic risk prediction accuracy between European and non-European individuals highlights a critical challenge in health inequality. To bridge this gap, we introduce JointPRS, a novel method that models multiple populations jointly to improve genetic risk predictions for non-European individuals. JointPRS has three key features.
View Article and Find Full Text PDFHospitalized COVID-19 patients exhibit diverse clinical outcomes, with some individuals diverging over time even though their initial disease severity appears similar. A systematic evaluation of molecular and cellular profiles over the full disease course can link immune programs and their coordination with progression heterogeneity. In this study, we carried out deep immunophenotyping and conducted longitudinal multi-omics modeling integrating ten distinct assays on a total of 1,152 IMPACC participants and identified several immune cascades that were significant drivers of differential clinical outcomes.
View Article and Find Full Text PDFGenetic prediction accuracy for non-European populations is hindered by the limited sample size of Genome-wide association studies (GWAS) data in these populations. Additionally, it is challenging to tune model parameters with a small tuning dataset for methods that require tuning data, which is often the case for non-European samples. To address these challenges, we propose JointPRS, a novel, data-adaptive framework that simultaneously models multiple populations using GWAS summary statistics.
View Article and Find Full Text PDFDissolved organic matter (DOM) plays important roles in environmental ecosystems. While many studies have explored the characteristics of aged biochar, limited information is available about the properties of DOM derived from aged biochar. In this study, biochar obtained from maize stalk and soybean straw were aged using farmland or vegetable-soil solution, as well as soil solution containing hydrogen peroxide (HO).
View Article and Find Full Text PDF