Publications by authors named "Leppo M"

Insulin resistance (IR) is one of the hallmarks of heart failure (HF). Abnormalities in skeletal muscle (SM) metabolism have been identified in patients with HF. However, the underlying mechanisms of IR development in SM in HF are poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • Abnormalities in cardiac energy metabolism, particularly involving creatine kinase (CK), contribute to heart failure and its remodeling, with decreased CK activity observed in both experimental and human cases.
  • A study involving 27 heart failure patients and 14 healthy individuals showed a strong correlation between reduced ATP levels and pathological left ventricular changes.
  • Experimental results in mice indicated that boosting mitochondrial CK (CKmito) helped mitigate heart hypertrophy and dysfunction, highlighting the importance of CK's role in cardiac energy metabolism for preventing adverse remodeling in heart failure.
View Article and Find Full Text PDF

Doxorubicin (DOX) is a commonly used life-saving antineoplastic agent that also causes dose-dependent cardiotoxicity. Because ATP is absolutely required to sustain normal cardiac contractile function and because impaired ATP synthesis through creatine kinase (CK), the primary myocardial energy reserve reaction, may contribute to contractile dysfunction in heart failure, we hypothesized that impaired CK energy metabolism contributes to DOX-induced cardiotoxicity. We therefore overexpressed the myofibrillar isoform of CK (CK-M) in the heart and determined the energetic, contractile and survival effects of CK-M following weekly DOX (5 mg/kg) administration using in vivo (31)P MRS and (1)H MRI.

View Article and Find Full Text PDF

The interleukin-10 knockout mouse (IL10(tm/tm)) has been proposed as a model for human frailty, a geriatric syndrome characterized by skeletal muscle (SM) weakness, because it develops an age-related decline in SM strength compared to control (C57BL/6J) mice. Compromised energy metabolism and energy deprivation appear to play a central role in muscle weakness in metabolic myopathies and muscular dystrophies. Nonetheless, it is not known whether SM energy metabolism is altered in frailty.

View Article and Find Full Text PDF

Reduced myofibrillar ATP availability during prolonged myocardial ischemia may limit post-ischemic mechanical function. Because creatine kinase (CK) is the prime energy reserve reaction of the heart and because it has been difficult to augment ATP synthesis during and after ischemia, we used mice that overexpress the myofibrillar isoform of creatine kinase (CKM) in cardiac-specific, conditional fashion to test the hypothesis that CKM overexpression increases ATP delivery in ischemic-reperfused hearts and improves functional recovery. Isolated, retrograde-perfused hearts from control and CKM mice were subjected to 25 min of global, no-flow ischemia and 40 min of reperfusion while cardiac function [rate pressure product (RPP)] was monitored.

View Article and Find Full Text PDF

Objective: To evaluate the performance of Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) creatinine, cystatin C, and creatinine-cystatin C estimating equations in HIV-positive patients.

Methods: We evaluated the performance of the Modification of Diet in Renal Disease (MDRD) Study and CKD-EPI creatinine 2009, CKD-EPI cystatin C 2012, and CKD-EPI creatinine-cystatin C 2012 glomerular filtration rate (GFR) estimating equations compared with GFR measured using plasma clearance of iohexol in 200 HIV-positive patients on stable antiretroviral therapy. Creatinine and cystatin C assays were standardized to certified reference materials.

View Article and Find Full Text PDF

ATP is required for normal cardiac contractile function, and it has long been hypothesized that reduced energy delivery contributes to the contractile dysfunction of heart failure (HF). Despite experimental and clinical HF data showing reduced metabolism through cardiac creatine kinase (CK), the major myocardial energy reserve and temporal ATP buffer, a causal relationship between reduced ATP-CK metabolism and contractile dysfunction in HF has never been demonstrated. Here, we generated mice conditionally overexpressing the myofibrillar isoform of CK (CK-M) to test the hypothesis that augmenting impaired CK-related energy metabolism improves contractile function in HF.

View Article and Find Full Text PDF

Adriamycin (ADR) is an established, life-saving antineoplastic agent, the use of which is often limited by cardiotoxicity. ADR-induced cardiomyopathy is often accompanied by depressed myocardial high-energy phosphate (HEP) metabolism. Impaired HEP metabolism has been suggested as a potential mechanism of ADR cardiomyopathy, in which case the bioenergetic decline should precede left ventricular (LV) dysfunction.

View Article and Find Full Text PDF

Objectives: The aim of this study was to quantify acute myocardial retention of cardiac-derived stem cells (CDCs) and evaluate different delivery methods with positron emission tomography (PET).

Background: Success of stem cell transplantation for cardiac regeneration is partially limited by low retention/engraftment of the delivered cells. A clinically applicable method for accurate quantification of cell retention would enable optimization of cell delivery.

View Article and Find Full Text PDF

Previously, we showed that oral allopurinol increased survival in mice with post-ischemic cardiomyopathy and attributed this outcome to an improvement of excitation-contraction coupling that boosted contractility. In this study, we tested the sustainability of this enhanced contraction associated with decreased oxidative damage over an extended time. Mice were divided into three groups: sham-operated control, myocardial infarction-heart failure (MI-HF), and oxypurinol-treated heart failure (Oxy-HF).

View Article and Find Full Text PDF

Objectives: We examined the sodium-iodide symporter (NIS), which promotes in vivo cellular uptake of technetium 99m ((99m)Tc) or iodine 124 ((124)I), as a reporter gene for cell tracking by single-photon emission computed tomography (SPECT) or positron emission tomography (PET) imaging.

Background: Stem cells offer the promise of cardiac repair. Stem cell labeling is a prerequisite to tracking cell fate in vivo.

View Article and Find Full Text PDF

Cardiosphere-derived resident cardiac stem cells (CDCs) are readily isolated from adult hearts and confer functional benefit in animal models of heart failure. To study cardiogenic differentiation in CDCs, we developed a method to genetically label and selectively enrich for cells that have acquired a cardiac phenotype. Lentiviral vectors achieved significantly higher transduction efficiencies in CDCs than any of the nine adeno-associated viral (AAV) serotypes tested.

View Article and Find Full Text PDF

Background: Stem cell labeling with iron oxide (ferumoxide) particles allows labeled cells to be detected by magnetic resonance imaging (MRI) and is commonly used to track stem cell engraftment. However, the validity of MRI for distinguishing surviving ferumoxide-labeled cells from other sources of MRI signal, for example, macrophages containing ferumoxides released from nonsurviving cells, has not been thoroughly investigated. We sought to determine the relationship between the persistence of iron-dependent MRI signals and cell survival 3 weeks after injection of syngeneic or xenogeneic ferumoxides-labeled stem cells (cardiac-derived stem cells) in rats.

View Article and Find Full Text PDF

This paper concerns the role of nitric oxide (NO) in controlling metamorphosis in the marine gastropod Crepidula fornicata. Metamorphosis was stimulated by the nitric oxide synthase (NOS) inhibitors AGH (aminoguanidine hemisulfate) and SMIS (S-methylisothiourea sulfate) at concentrations of about 100-1000 micromol l(-1) and 50-200 micromol l(-1), respectively. Metamorphosis was not, however, induced by the NOS inhibitor l-NAME (l-N(G)-nitroarginine methyl ester) at even the highest concentration tested, 500 micromol l(-1).

View Article and Find Full Text PDF

Background: Ex vivo expansion of resident cardiac stem cells, followed by delivery to the heart, may favor regeneration and functional improvement.

Methods And Results: Percutaneous endomyocardial biopsy specimens grown in primary culture developed multicellular clusters known as cardiospheres, which were plated to yield cardiosphere-derived cells (CDCs). CDCs from human biopsy specimens and from comparable porcine samples were examined in vitro for biophysical and cytochemical evidence of cardiogenic differentiation.

View Article and Find Full Text PDF

Despite the widespread use of mice in the investigation of cardiac function, little is known as to what extent cardiac contractile function varies between different murine strains. We have investigated basic contractile function in isolated multicellular right ventricular trabeculae from three commonly used mouse strains (C57BL/6, SV129, and FVBN). Suitable trabeculae (<100 microm thick, >1 mm long) occurred rather frequently in FVBN and SV129 mice (on average about 2 per heart), but only sporadically in C57BL/6 mice (on average only 1 per 3-4 mice).

View Article and Find Full Text PDF

Oxidative stress is a hallmark of systemic illnesses, including heart failure. Nevertheless, the overall importance of radical production in the heart remains conjectural; is it merely a marker of illness, or can intervention alter the progression of disease? This question was addressed by blocking xanthine oxidase (XO), a superoxide-generating enzyme that is upregulated in animal models of heart failure. In a randomized prospective trial design, we administered the XO inhibitor allopurinol orally to mice that had undergone massive myocardial infarction (MI).

View Article and Find Full Text PDF

The progression of hypertension to cardiac failure involves systemic changes that may ultimately affect contractility throughout the heart. Spontaneous hypertensive heart failure (SHHF) rats have depressed left ventricular (LV) function, but right ventricular (RV) dysfunction is less well characterized. Ultrathin (87 +/- 5 mircom) trabeculae were isolated from end-stage failing SHHF rats and from age-matched controls.

View Article and Find Full Text PDF

Despite the fact that the mouse has become a common tool to study cardiac dysfunction, little is known regarding the regulation of murine cardiac contractility. We have investigated the three main mechanisms that regulate cardiac output (frequency-dependent activation, length-dependent activation, and beta-adrenergic stimulation) in ultra-thin right ventricular (RV) trabeculae from the mouse heart at body temperature (37 degrees C). [Ca(2+)](i) was recorded in a subset of trabeculae iontophoretically loaded with fura-2, and rapid cooling contractures were performed to estimate the sarcoplasmic reticulum (SR) calcium load.

View Article and Find Full Text PDF

ST elevation is a classical hallmark of acute transmural myocardial ischemia. Indeed, ST elevation is the major clinical criterion for committing patients with chest pain to emergent coronary revascularization. Despite its clinical importance, the mechanism of ST elevation remains unclear.

View Article and Find Full Text PDF

Coxsackievirus infection causes myocarditis and pancreatitis in humans. In certain strains of mice, Coxsackievirus causes a severe pancreatitis. We explored the role of NO in the host immune response to viral pancreatitis.

View Article and Find Full Text PDF

The host response to Coxsackievirus infection is complex, including T lymphocytes, B lymphocytes, natural killer cells, and macrophages. Although Coxsackievirus infection induces expression of inducible nitric oxide synthase (NOS2; EC 1.14.

View Article and Find Full Text PDF

Patients with myocarditis often develop dilated cardiomyopathy and congestive heart failure. Histologically, myocarditis is manifested by rare foci of myocyte necrosis with interstitial inflammation, while cardiomyopathy is characterized by diffuse interstitial fibrosis, myocyte hypertrophy, and an absence of active interstitial inflammation. The relationship between myocardial inflammation and interstitial fibrosis is poorly understood.

View Article and Find Full Text PDF

The ability to measure cyclic changes in myocardial sarcomere lengths and orientations during cardiac ejection and filling would improve our understanding of how the cellular processes of contraction relate to the pumping of the whole heart. Previously, only postmortem sarcomere measurements were possible after arresting the heart in one state and fixing it for histology. By combining such histological measurements with direct observations of the deformation experienced by the same myocardial region while the heart was beating, we have developed a method to reconstruct sarcomere lengths and orientations throughout the cardiac cycle and at several transmural layers.

View Article and Find Full Text PDF