Bacteria from diverse genera, including Acetivibrio, Bacillus, Cellulosilyticum, Clostridium, Desulfotomaculum, Lachnoclostridium, Moorella, Ruminiclostridium, and Thermoanaerobacterium, have attracted significant attention due to their versatile metabolic capabilities encompassing acetogenic, cellulolytic, and C-metabolic properties, and acetone-butanol-ethanol fermentation. Despite their biotechnological significance, a comprehensive understanding of clostridial physiology and evolution has remained elusive. This study reports an extensive comparative genomic analysis of 48 fully sequenced bacterial genomes from these genera.
View Article and Find Full Text PDFThe discharge of toxic chemicals into water bodies and their linked detrimental effects on health is a global concern. Phytoremediation, an environment-friendly plant-based technology, has gained intensive interest over the last decades. For the aquatic phytoremediation process, the commonly available duckweeds have recently attracted significant attention due to their capacity to grow in diverse ecological niches, fast growth characteristics, suitable morphology for easy handling of biomass, and capacity to remove and detoxify various potential toxic elements and compounds.
View Article and Find Full Text PDFThe influence of electrode surface chemistry over biofilm growth was evaluated for photo-bioelectrocatalytic fuel cell. A consortium of photosynthetic bacteria was grown onto different electrodes designed with polyethylenimine (PEI) and multiwall carbon nanotubes as hydrophilic and hydrophobic modifier, respectively. The designed electrodes were loaded with 0.
View Article and Find Full Text PDFWe report here an alcohol oxidase (AOx) based third generation bioanode for generating power from methanol substrate in a fuel cell setup using air breathed laccase biocathode. A composite three dimensional microporous matrix containing multiwalled carbon nanotubes, carbon paste and nafion was used as electroactive support for immobilization of the enzymes on toray carbon paper as supporting electrode in the fabrication of the bioelectrodes. Polyethylenimine was used to electrostatically stabilize the AOx (pI 4.
View Article and Find Full Text PDFLipase was immobilized in silk fibers through glutaraldehyde cross-linking to a maximum loading of 59 U/g silk-fiber and the immobilized lipase was utilized for the hydrolysis of sunflower oil (Helianthus annuus). The hydrolytic activity of the lipase, which was poor in biphasic oil in water system, was increased significantly when the sunflower oil was emulsified in aqueous medium. The hydrolytic activities of the immobilized lipase were 48.
View Article and Find Full Text PDF