Publications by authors named "Leor Katz"

Optogenetics affords new opportunities to interrogate neuronal circuits that control behavior. In primates, the usefulness of optogenetics in studying cognitive functions remains a challenge. The technique has been successfully wielded, but behavioral effects have been demonstrated primarily for sensorimotor processes.

View Article and Find Full Text PDF

The locus coeruleus is the seat of a brain-wide neuromodulatory circuit. Using optogenetic and electrophysiological tools to selectively interrogate noradrenergic neurons in non-human primates, Ghosh and Maunsell show how locus coeruleus neurons contribute to a specific aspect of visual attention.

View Article and Find Full Text PDF

Face processing is fundamental to primates and has been extensively studied in higher-order visual cortex. Here, we report that visual neurons in the midbrain superior colliculus (SC) of macaque monkeys display a preference for images of faces. This preference emerges within 40 ms of stimulus onset-well before "face patches" in visual cortex-and, at the population level, can be used to distinguish faces from other visual objects with accuracies of ∼80%.

View Article and Find Full Text PDF

Face processing is fundamental to primates and has been extensively studied in higher-order visual cortex. Here we report that visual neurons in the midbrain superior colliculus (SC) display a preference for faces, that the preference emerges within 50ms of stimulus onset - well before "face patches" in visual cortex - and that this activity can distinguish faces from other visual objects with accuracies of ~80%. This short-latency preference in SC depends on signals routed through early visual cortex, because inactivating the lateral geniculate nucleus, the key relay from retina to cortex, virtually eliminates visual responses in SC, including face-related activity.

View Article and Find Full Text PDF

Correlated variability in neuronal activity (spike count correlations, r) can constrain how information is read out from populations of neurons. Traditionally, r is reported as a single value summarizing a brain area. However, single values, like summary statistics, stand to obscure underlying features of the constituent elements.

View Article and Find Full Text PDF

Making informed decisions in noisy environments requires integrating sensory information over time. However, recent work has suggested that it may be difficult to determine whether an animal's decision-making strategy relies on evidence integration or not. In particular, strategies based on extrema-detection or random snapshots of the evidence stream may be difficult or even impossible to distinguish from classic evidence integration.

View Article and Find Full Text PDF

Recent evidence suggests that microsaccades are causally linked to the attention-related modulation of neurons-specifically, that microsaccades toward the attended location are required for the subsequent changes in firing rate. These findings have raised questions about whether attention-related modulation is due to different states of attention as traditionally assumed or might instead be a secondary effect of microsaccades. Here, in two rhesus macaques, we tested the relationship between microsaccades and attention-related modulation in the superior colliculus (SC), a brain structure crucial for allocating attention.

View Article and Find Full Text PDF
What is attention?

Wiley Interdiscip Rev Cogn Sci

January 2023

We define attention as "the set of evolved brain processes that leads to adaptive and effective behavioral selection." Our emphasis is on understanding the biological and neural mechanisms that make the behavioral properties of attention possible. Although much has been learned about the functional operation of attention by postulating and testing different aspects of attention, our view is that the distinctions most frequently relied upon are much less useful for identifying the detailed biological mechanisms and brain circuits.

View Article and Find Full Text PDF

Recent fMRI experiments identified an attention-related region in the macaque temporal cortex, here called the floor of the superior temporal sulcus (fSTS), as the primary cortical target of superior colliculus (SC) activity. However, it remains unclear which aspects of attention are processed by fSTS neurons and how or why these might depend on SC activity. Here, we show that SC inactivation decreases attentional modulations in fSTS neurons by increasing their activity for ignored stimuli in addition to decreasing their activity for attended stimuli.

View Article and Find Full Text PDF

How is value processed in the brain to inform decision making? A plethora of studies describe how preferences are shaped by experience with external reinforcements. While research on this reinforced pathway is well established, far less research has explored the neural pathways promoting preference change in the absence of external reinforcements. Here, we review behavioral paradigms linking nonreinforced preference change with manipulations of stimulus exposure, response, and gaze position.

View Article and Find Full Text PDF

Motion discrimination is a well-established model system for investigating how sensory signals are used to form perceptual decisions. Classic studies relating single-neuron activity in the middle temporal area (MT) to perceptual decisions have suggested that a simple linear readout could underlie motion discrimination behavior. A theoretically optimal readout, in contrast, would take into account the correlations between neurons and the sensitivity of individual neurons at each time point.

View Article and Find Full Text PDF

We introduce a decision model that interprets the relative levels of moment-by-moment spiking activity from the right and left superior colliculus to distinguish relevant from irrelevant stimulus events. The model explains detection performance in a covert attention task, both in intact animals and when performance is perturbed by causal manipulations. This provides a specific example of how midbrain activity could support perceptual judgments during attention tasks.

View Article and Find Full Text PDF

Perceptual decision-making is often modeled as the accumulation of sensory evidence over time. Recent studies using psychophysical reverse correlation have shown that even though the sensory evidence is stationary over time, subjects may exhibit a time-varying weighting strategy, weighting some stimulus epochs more heavily than others. While previous work has explained time-varying weighting as a consequence of static decision mechanisms (e.

View Article and Find Full Text PDF

Over the past two decades, neurophysiological responses in the lateral intraparietal area (LIP) have received extensive study for insight into decision making. In a parallel manner, inferred cognitive processes have enriched interpretations of LIP activity. Because of this bidirectional interplay between physiology and cognition, LIP has served as fertile ground for developing quantitative models that link neural activity with decision making.

View Article and Find Full Text PDF

During perceptual decision-making, responses in the middle temporal (MT) and lateral intraparietal (LIP) areas appear to map onto theoretically defined quantities, with MT representing instantaneous motion evidence and LIP reflecting the accumulated evidence. However, several aspects of the transformation between the two areas have not been empirically tested. We therefore performed multistage systems identification analyses of the simultaneous activity of MT and LIP during individual decisions.

View Article and Find Full Text PDF

During decision making, neurons in multiple brain regions exhibit responses that are correlated with decisions. However, it remains uncertain whether or not various forms of decision-related activity are causally related to decision making. Here we address this question by recording and reversibly inactivating the lateral intraparietal (LIP) and middle temporal (MT) areas of rhesus macaques performing a motion direction discrimination task.

View Article and Find Full Text PDF

It is well established that ongoing cognitive functions affect the trajectories of limb movements mediated by corticospinal circuits, suggesting an interaction between cognition and motor action. Although there are also many demonstrations that decision formation is reflected in the ongoing neural activity in oculomotor brain circuits, it is not known whether the decision-related activity in those oculomotor structures interacts with eye movements that are decision irrelevant. Here we tested for an interaction between decisions and instructed saccades unrelated to the perceptual decision.

View Article and Find Full Text PDF

Temporal integration of visual motion has been studied extensively within the frontoparallel plane (i.e., 2D).

View Article and Find Full Text PDF

Recent studies have described a phenomenon wherein the onset of a peripheral visual stimulus elicits short-latency (<100 ms) stimulus-locked recruitment (SLR) of neck muscles in nonhuman primates (NHPs), well before any saccadic gaze shift. The SLR is thought to arise from visual responses within the intermediate layers of the superior colliculus (SCi), hence neck muscle recordings may reflect presaccadic activity within the SCi, even in humans. We obtained bilateral intramuscular recordings from splenius capitis (SPL, an ipsilateral head-turning muscle) from 28 human subjects performing leftward or rightward visually guided eye-head gaze shifts.

View Article and Find Full Text PDF

Visual memory has been demonstrated to play a role in both visual search and attentional prioritization in natural scenes. However, it has been studied predominantly in experimental paradigms using multiple two-dimensional images. Natural experience, however, entails prolonged immersion in a limited number of three-dimensional environments.

View Article and Find Full Text PDF

Background: Apathy is one hallmark of major depression (MDD). It is distinguished by lack of emotion, whereas other aspects of depression involve considerable emotional distress. Investigating both apathy and depression may increase the degree of treatment efficacy for both ailments together and apart.

View Article and Find Full Text PDF

Background: Electroconvulsive therapy (ECT) is an effective alternative for pharmacotherapy in treatment-resistant depressive patients, but the side effects limit its use. Transcranial magnetic stimulation (TMS) has been proposed as a refined alternative, but most studies do not indicate that TMS is as effective as ECT for severe depression.

Objective: We propose that the limited effectiveness of standard TMS resides in its superficial effect on the cortex, although much of the pathophysiology of depression is associated with deeper and larger brain regions implicated in the reward system.

View Article and Find Full Text PDF