Publications by authors named "Leopoldo L Martin"

The fabrication of three-dimensional (3D) nanostructures within optical materials is currently a highly sought-after capability. Achieving nanoscale structuring of media within its inner volume in 3D and with free design flexibility, high accuracy and precision is a development yet to be demonstrated. In this work, a 3D laser nanolithography technique is developed which allows producing mm-long hollow nanopores inside solid-state laser crystals and with a high degree of control of pore cross-sectional aspect ratio and size.

View Article and Find Full Text PDF

This study experimentally and numerically validates the commonly employed technique of laser-induced heating of a material in optical temperature sensing studies. Furthermore, the Er3+-doped glass microspheres studied in this work can be employed as remote optical temperature sensors. Laser-induced self-heating is a useful technique commonly employed in optical temperature sensing research when two temperature-dependent parameters can be correlated, such as in fluorescence intensity ratio vs.

View Article and Find Full Text PDF

In this report, an optical fiber of which the core is made solely of water, while the cladding is air, is designed and manufactured. In contrast with solid-cladding devices, capillary oscillations are not restricted, allowing the fiber walls to move and vibrate. The fiber is constructed by a high direct current (DC) voltage of several thousand volts (kV) between two water reservoirs that creates a floating water thread, known as a water bridge.

View Article and Find Full Text PDF

We experimentally demonstrate light-flow interaction, in which the angular momentum of circulating light excites micro-vortices. In contrast with the solid-phase of matter, where one has to overcome static friction in order to start motion, liquids have no "static drag." Relevant to almost all optofluidic micro-systems hence, μWatt optical power is sufficient to start flows, even in liquids 50 times more viscous than water.

View Article and Find Full Text PDF

The confinement of light and sound, while they are traveling in fibers, enables a variety of light-matter interactions. Therefore, it is natural to ask if fibers can also host capillary waves. Capillary waves are similar to those we see when throwing a stone into a puddle.

View Article and Find Full Text PDF

We experimentally demonstrate the high sensitivity of a novel liquid state, whispering-gallery-mode optical resonator to humidity changes. The optical resonator used consists of a droplet made of glycerol, a transparent liquid that enables high optical quality factor, doped with fluorescent material. As glycerol is highly hygroscopic, the refractive index and radius of the droplet change with ambient humidity.

View Article and Find Full Text PDF

We fabricate a liquid-core liquid-clad microcavity that is coupled to a standard tapered fiber, and then experimentally map the whispering-gallery modes of this droplet resonator. The shape of our resonator is similar to a thin prolate spheroid, which makes space for many high-order transverse modes, suggesting that some of them will share the same resonance frequency. Indeed, we experimentally observe that more than half of the droplet's modes have a sibling having the same frequency (to within linewidth) and therefore exhibiting a standing interference-pattern.

View Article and Find Full Text PDF

We experimentally report on optical binding of many glass particles in air that levitate in a single optical beam. A diversity of particle sizes and shapes interact at long range in a single Gaussian beam. Our system dynamics span from oscillatory to random and dimensionality ranges from 1 to 3D.

View Article and Find Full Text PDF

In submerged microcavities there is a tradeoff between resonant enhancement for spatial water and light overlap. Why not transform the continuously resonating optical mode to be fully contained in a water microdroplet per se? Here we demonstrate a sustainable 30-μm-pure water device, bounded almost completely by free surfaces, enabling >1,000,000 re-circulations of light. The droplets survive for >16 h using a technique that is based on a nano-water bridge from the droplet to a distant reservoir to compensate for evaporation.

View Article and Find Full Text PDF

We experimentally demonstrate trapping a microdroplet by using an optical tweezer and then activating it as a microresonator by bringing it close to a tapered-fiber coupler. Our tweezers facilitated the tuning of the coupling from the under-coupled to the critically-coupled regime while the quality-factor [Q] is 12 million and the resonator's size is at the 80 μm scale.

View Article and Find Full Text PDF

We experimentally demonstrate, for the first time, binding of aerosols of various sizes and shapes in white light. The optomechancial interaction between particles is long range and is in the underdamped regime. Incoherency allows mitigation of interference fringes to enable monotonically changing the distance between particles from 60 μm to contact, constituting a parametrically controlled testbed for transition studies at new scales.

View Article and Find Full Text PDF