Cellular processes require precise and specific gene regulation, in which continuous mRNA degradation is a major element. The mRNA degradation mechanisms should be able to degrade a wide range of different RNA substrates with high efficiency, but should at the same time be limited, to avoid killing the cell by elimination of all cellular RNA. RNase Y is a major endoribonuclease found in most Firmicutes, including Bacillus subtilis and Staphylococcus aureus.
View Article and Find Full Text PDFRNA processing and degradation shape the transcriptome by generating stable molecules that are necessary for translation (rRNA and tRNA) and by facilitating the turnover of mRNA, which is necessary for the posttranscriptional control of gene expression. In bacteria and the plant chloroplast, RNA degradosomes are multienzyme complexes that process and degrade RNA. In many bacterial species, the endoribonuclease RNase E is the central component of the RNA degradosome.
View Article and Find Full Text PDFThe essential endoribonuclease RNase E, which is a component of the Escherichia coli multienzyme RNA degradosome, has a global role in RNA processing and degradation. RNase E localizes to the inner cytoplasmic membrane in small, short-lived clusters (puncta). Rifampin, which arrests transcription, inhibits RNase E clustering and increases its rate of diffusion.
View Article and Find Full Text PDFRifampicin, a broad-spectrum antibiotic, inhibits bacterial RNA polymerase. Here we show that rifampicin treatment of Escherichia coli results in a 50% decrease in cell size due to a terminal cell division. This decrease is a consequence of inhibition of transcription as evidenced by an isogenic rifampicin-resistant strain.
View Article and Find Full Text PDFThe emergence of superbugs developing resistance to antibiotics and the resurgence of microbial infections have led scientists to start an antimicrobial arms race. In this context, we have previously identified an active RiPP, the Ruminococcin C1, naturally produced by E1, a symbiont of the healthy human intestinal microbiota. This RiPP, subclassified as a sactipeptide, requires the host digestive system to become active against pathogenic Clostridia and multidrug-resistant strains.
View Article and Find Full Text PDFThe reason for RNase E attachment to the inner membrane is largely unknown. To understand the cell biology of RNA degradation, we have characterized a strain expressing RNase E lacking the membrane attachment site (cytoplasmic RNase E). Genome-wide data show a global slowdown in mRNA degradation.
View Article and Find Full Text PDFRNase E, which is the central component of the multienzyme RNA degradosome, serves as a scaffold for interaction with other enzymes involved in mRNA degradation including the DEAD-box RNA helicase RhlB. Epifluorescence microscopy under live cell conditions shows that RNase E and RhlB are membrane associated, but neither protein forms cytoskeletal-like structures as reported earlier by Taghbalout and Rothfield. We show that association of RhlB with the membrane depends on a direct protein interaction with RNase E, which is anchored to the inner cytoplasmic membrane through an MTS (Membrane Targeting Sequence).
View Article and Find Full Text PDFThe DEAD-box RNA helicases are a ubiquitous family of enzymes involved in processes that include RNA splicing, ribosome biogenesis, and mRNA degradation. In general, these enzymes help to unwind short stretches of double-stranded RNA in processes that involve the remodeling of RNA structure or of ribonucleoprotein complexes. Here we describe work from our laboratory on the characterization of the RhlB of Escherichia coli, a DEAD-box RNA helicase that is part of a multienzyme complex known as the RNA degradosome.
View Article and Find Full Text PDFCo-immunopurification is a classical technique in which antiserum raised against a specific protein is used to purify a multiprotein complex. We describe work from our laboratory in which co-immunopurification was used to characterize the RNA degradosome of Escherichia coli, a multiprotein complex involved in RNA processing and mRNA degradation. Polyclonal rabbit antibodies raised against either RNase E or PNPase, two RNA degrading enzymes in the RNA degradosome, were used in co-immunopurification experiments aimed at studying the assembly of the RNA degradosome and mapping protein-protein interactions within the complex.
View Article and Find Full Text PDFRNase E is an essential endoribonuclease involved in RNA processing and mRNA degradation. The N-terminal half of the protein encompasses the catalytic domain; the C-terminal half is the scaffold for the assembly of the multienzyme RNA degradosome. Here we identify and characterize 'segment-A', an element in the beginning of the non-catalytic region of RNase E that is required for membrane binding.
View Article and Find Full Text PDFThe Escherichia coli protein RhlB is an ATP-dependent motor that unfolds structured RNA for destruction by partner ribonucleases. In E. coli, and probably many other related gamma-proteobacteria, RhlB associates with the essential endoribonuclease RNase E as part of the multi-enzyme RNA degradosome assembly.
View Article and Find Full Text PDFThe RNA degradosome of Escherichia coli is a ribonucleolytic multienzyme complex containing RNase E, polynucleotide phosphorylase, RhlB, and enolase. Previous in vitro and in vivo work has shown that RhlB facilitates the exonucleolytic degradation of structured mRNA decay intermediates by polynucleotide phosphorylase in an ATPase-dependent reaction. Here, we show that deleting the gene encoding RhlB stabilizes a lacZ mRNA transcribed by bacteriophage T7 RNA polymerase.
View Article and Find Full Text PDFThe non-catalytic region of Escherichia coli RNase E contains a protein scaffold that binds to the other components of the RNA degradosome. Alanine scanning yielded a mutation, R730A, that disrupts the interaction between RNase E and the DEAD-box RNA helicase, RhlB. We show that three other DEAD-box helicases, SrmB, RhlE and CsdA also bind to RNase E in vitro.
View Article and Find Full Text PDFThe hydrolytic endoribonuclease RNase E, which is widely distributed in bacteria and plants, plays key roles in mRNA degradation and RNA processing in Escherichia coli. The enzymatic activity of RNase E is contained within the conserved amino-terminal half of the 118 kDa protein, and the carboxy-terminal half organizes the RNA degradosome, a multi-enzyme complex that degrades mRNA co-operatively and processes ribosomal and other RNA. The study described herein demonstrates that the carboxy-terminal domain of RNase E has little structure under native conditions and is unlikely to be extensively folded within the degradosome.
View Article and Find Full Text PDFHIV-1 nucleocapsid protein NCp7 is a small basic protein with two zinc fingers, found in the virion core where several hundred molecules coat the genomic RNA. NCp7 has nucleic acid chaperone properties that guide reverse transcriptase (RT) to synthesize the proviral DNA flanked by the long terminal repeats (LTR). In vitro, NCp7 can strongly activate magnesium-dependent LTR-DNA strand transfer by integrase (IN).
View Article and Find Full Text PDF