Resistance to cancer treatment remains a major clinical hurdle. Here, we demonstrate that the CoREST complex is a key determinant of endocrine resistance and ER breast cancer plasticity. In endocrine-sensitive cells, CoREST is recruited to regulatory regions co-bound to ERα and FOXA1 to regulate the estrogen pathway.
View Article and Find Full Text PDFAims: In an effort to gain further insight into the underlying mechanisms tied to disease onset and progression of Gulf War Illness (GWI), our team evaluated GWI patient response to stress utilizing RNA-Seq.
Main Methods: The protocol included blood collection before exercise challenge (baseline), at maximal exertion, and after exercise challenge (recovery - four hours post-exercise challenge). Peripheral blood mononuclear cell (PBMC) transcriptomics data were analyzed to understand why GWI patients process stressors differently from their healthy counterparts.
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a multisystem illness characterized by medically unexplained debilitating fatigue with suggested altered immunological state. Our study aimed to explore peripheral blood mononuclear cells (PBMCs) for microRNAs (miRNAs) expression in ME/CFS subjects under an exercise challenge. The findings highlight the immune response and inflammation links to differential miRNA expression in ME/CFS.
View Article and Find Full Text PDFMyalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating multisystemic disease of unknown etiology, affecting thousands of individuals worldwide. Its diagnosis still relies on ruling out medical problems leading to unexplained fatigue due to a complete lack of disease-specific biomarkers. Our group and others have explored the potential value of microRNA profiles (miRNomes) as diagnostic tools for this disease.
View Article and Find Full Text PDFStem Cell Res Ther
December 2019
Background: Mesenchymal stromal cells (MSCs), adult stromal cells most commonly isolated from bone marrow (BM), are being increasingly utilized in various therapeutic applications including tissue repair via immunomodulation, which is recognized as one of their most relevant mechanism of action. The promise of MSC-based therapies is somewhat hindered by their apparent modest clinical benefits, highlighting the need for approaches that would increase the efficacy of such therapies. Manipulation of cellular stress-response mechanism(s) such as autophagy, a catabolic stress-response mechanism, with small molecules prior to or during MSC injection could improve MSCs' therapeutic efficacy.
View Article and Find Full Text PDFGulf War Illness (GWI) affects about 25% of Persian Gulf veterans with a cluster of chronic symptoms, including immune dysfunction and neurological issues. Recent studies implicate gene expression changes in immune function to be associated with GWI. Since DNA methylation can regulate such changes in gene expression, and disruption of DNA methylation pattern is implicated in various immune and neurological diseases, we aimed to study the DNA methylation patterns in peripheral blood mononuclear cells from GWI patients.
View Article and Find Full Text PDFBackground: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex condition involving multiple organ systems and characterized by persistent/relapsing debilitating fatigue, immune dysfunction, neurological problems, and other symptoms not curable for at least 6 months. Disruption of DNA methylation patterns has been tied to various immune and neurological diseases; however, its status in ME/CFS remains uncertain. Our study aimed at identifying changes in the DNA methylation patterns that associate with ME/CFS.
View Article and Find Full Text PDF