DNA transfer is ubiquitous in the human gut microbiota, especially among species of the order Bacteroidales. In silico analyses have revealed hundreds of mobile genetic elements shared between these species, yet little is known about the phenotypes they encode, their effects on fitness, or pleiotropic consequences for the recipient's genome. In this work, we show that acquisition of a ubiquitous integrative conjugative element (ICE) encoding a type VI secretion system (T6SS) shuts down the native T6SS of .
View Article and Find Full Text PDFCholesterol-dependent cytolysins (CDCs) comprise a large family of pore-forming toxins produced by Gram-positive bacteria, which are used to attack eukaryotic cells. Here, we functionally characterize a family of 2-component CDC-like (CDCL) toxins produced by the Gram-negative Bacteroidota that form pores by a mechanism only described for the mammalian complement membrane attack complex (MAC). We further show that the Bacteroides CDCLs are not eukaryotic cell toxins like the CDCs, but instead bind to and are proteolytically activated on the surface of closely related species, resulting in pore formation and cell death.
View Article and Find Full Text PDFAlthough horizontal gene transfer is pervasive in the intestinal microbiota, we understand only superficially the roles of most exchanged genes and how the mobile repertoire affects community dynamics. Similarly, little is known about the mechanisms underlying the ability of a community to recover after a perturbation. Here, we identified and functionally characterized a large conjugative plasmid that is one of the most frequently transferred elements among Bacteroidales species and is ubiquitous in diverse human populations.
View Article and Find Full Text PDFDNA transfer is ubiquitous in the gut microbiota, especially among species of Bacteroidales. analyses have revealed hundreds of mobile genetic elements shared between these species, yet little is known about the phenotypes they encode, their effects on fitness, or pleiotropic consequences for the recipient's genome. Here, we show that acquisition of a ubiquitous integrative and conjugative element encoding an antagonistic system shuts down the native contact-dependent antagonistic system of .
View Article and Find Full Text PDFApplying to graduate school can be particularly challenging for students from historically minoritized backgrounds due to a hidden curriculum in the graduate admissions process. To address this issue, a team of volunteer STEM trainees established the Científico Latino Graduate Student Mentorship Initiative (CL-GSMI) in 2019 to support applicants from historically minoritized backgrounds. CL-GSMI is designed to improve access to critical resources, including information, mentorship, and financial support, and has assisted 443 students in applying and matriculating to graduate school.
View Article and Find Full Text PDFThree distinct genetic architectures (GAs) of Type VI secretion systems (T6SSs) have been described in gut Bacteroidales species, each with unique genes and characteristics. Unlike the GA3 T6SSs, potent antagonism has not yet been demonstrated for the GA1 or GA2 T6SSs. We previously showed that the GA2 T6SS loci are contained on integrative and conjugative elements and that there are five subtypes.
View Article and Find Full Text PDFBacteroidetocins are a family of antibacterial peptide toxins that are produced by and target members of the phylum . To date, 19 bacteroidetocins have been identified, and four have been tested and shown to kill diverse species (M. J.
View Article and Find Full Text PDFThe human gut microbiota is a dense microbial ecosystem with extensive opportunities for bacterial contact-dependent processes such as conjugation and Type VI secretion system (T6SS)-dependent antagonism. In the gut Bacteroidales, two distinct genetic architectures of T6SS loci, GA1 and GA2, are contained on Integrative and Conjugative Elements (ICE). Despite intense interest in the T6SSs of the gut Bacteroidales, there is only a superficial understanding of their evolutionary patterns, and of their dissemination among Bacteroidales species in human gut communities.
View Article and Find Full Text PDFMechanistic studies of anaerobic gut bacteria have been hindered by the lack of a fluorescent protein system to track and visualize proteins and dynamic cellular processes in actively growing bacteria. Although underappreciated, many gut "anaerobes" are able to respire using oxygen as the terminal electron acceptor. The oxygen continually released from gut epithelial cells creates an oxygen gradient from the mucus layer to the anaerobic lumen [L.
View Article and Find Full Text PDFBacteroides genomes encode a large repertoire of proteins dedicated to the utilization of diverse plant polysaccharides and host glycans. In this issue of Cell Host & Microbe, Glowacki et al. (2020) show that B.
View Article and Find Full Text PDFStudies of the gut microbiota have dramatically increased in recent years as the importance of this microbial ecosystem to human health and disease is better appreciated. The are the most abundant order of bacteria in the healthy human gut and induce both health-promoting and disease-promoting effects. There are more than 55 species of gut with extensive intraspecies genetic diversity, especially in regions involved in the synthesis of molecules that interact with other bacteria, the host, and the diet.
View Article and Find Full Text PDFThe Cdz bacteriocin system allows the aquatic oligotrophic bacterium to kill closely related species in a contact-dependent manner. The toxin, which aggregates on the surfaces of producer cells, is composed of two small hydrophobic proteins, CdzC and CdzD, each bearing an extended glycine-zipper motif, that together induce inner membrane depolarization and kill target cells. To further characterize the mechanism of Cdz delivery and toxicity, we screened for mutations that render a target strain resistant to Cdz-mediated killing.
View Article and Find Full Text PDFAntagonistic interactions are abundant in microbial communities and contribute not only to the composition and relative proportions of their members but also to the longer-term stability of a community. This Review will largely focus on bacterial antagonism mediated by ribosomally synthesized peptides and proteins produced by members of host-associated microbial communities. We discuss recent findings on their diversity, functions, and ecological impacts.
View Article and Find Full Text PDFMost bacteria are in fierce competition with other species for limited nutrients. Some bacteria can kill nearby cells by secreting bacteriocins, a diverse group of proteinaceous antimicrobials. However, bacteriocins are typically freely diffusible, and so of little value to planktonic cells in aqueous environments.
View Article and Find Full Text PDFThe oomycete Phytophthora infestans, causal agent of the tomato and potato late blight, generates important economic and environmental losses worldwide. As current control strategies are becoming less effective, there is a need for studies on oomycete metabolism to help identify promising and more effective targets for chemical control. The pyrimidine pathways are attractive metabolic targets to combat tumors, virus and parasitic diseases but have not yet been studied in Phytophthora.
View Article and Find Full Text PDFBackground: Fusarium oxysporum has worldwide distribution and causes severe vascular wilt or root rot in many plants. Strains are classified into formae speciales based on their high degree of host specificity, of which multilocus sequence typing provides a fairly good estimate.
Aims: The main aim of this study was to identify the causal agent of an infected potato tuber in Colombia.