A combination of a preexfoliated nanographene (NG) dispersion and fused electron donor-acceptor tetrathiafulvalene-perylenediimide (TTF-PDI) results in a noncovalent functionalization of NG. Such novel types of nanohybrids were characterized by complementary spectroscopic and microscopic techniques. The design strategy of the chromophoric and electroactive molecular conjugate renders a large and planar π-extended system with a distinct localization of electron-rich and electron-poor parts at either end of the molecular conjugate.
View Article and Find Full Text PDFTwo zinc phthalocyanines (ZnPcs) have been equipped with Newkome-type dendritic branches of increasing size and number of terminal carboxylate functional groups. The negatively charged carboxylates render these polyelectrolytes soluble in polar media such as methanol or buffered water. Sonication of the ZnPcs with graphene allowed for pronounced non-covalent binding of the ZnPc moieties on the graphene surface.
View Article and Find Full Text PDFDifferent water-soluble perylenediimides (PDIs) have been used to individualize and stabilize single-walled carbon nanotubes (SWCNTs) in aqueous media. A key feature of the PDIs is that they can be substituted at the bay positions via the addition of two and/or four bromines. This enables control over structural and electronic PDI characteristics, which prompted us to conduct comparative assays with focus on SWCNTs' chirality and charge transfer.
View Article and Find Full Text PDFHerein, various dispersions of MoS obtained by means of liquid phase exfoliation are spectroscopically, (spectro-) electrochemically, and microscopically characterized. At the core of these studies are transient absorption assays. Importantly, small-angle X-ray scattering measurements are employed to corroborate the exfoliated character of the MoS flakes in dispersion, on the one hand, and to correlate the results with TEM, AFM, and Raman characterization in the solid state, on the other.
View Article and Find Full Text PDFAssemblies of inorganic nanoparticles and carbon nanodots have emerged as promising candidates for hybrid materials in biomedical applications. In this work, the formation and properties of gold nanoparticles synthesized with the aid of carbon nanodots (CND) as reducing/stabilizing agents was investigated. Through careful modification of the reaction conditions, such as precursor concentrations and temperature, the size and shape of the particles can be controlled.
View Article and Find Full Text PDFGraphene-based materials (GBMs), with graphene, their most known member, at the head, constitute a large family of materials which has aroused the interest of scientists working in different research fields such as chemistry, physics, or materials science, to mention a few, arguably as no other material before. In this review, we offer a general overview on the most relevant synthetic approaches for the covalent and non-covalent functionalization and characterization of GBMs. Moreover, some representative examples of the incorporation into GBMs of electroactive units such as porphyrins, phthalocyanines, or ferrocene, among others, affording electron donor-acceptor (D-A) hybrids are presented.
View Article and Find Full Text PDFWe describe herein the preparation of novel exfoliated graphene-phthalocyanine nanohybrids, and the investigation of their photophysical properties. Pyridyl-phthalocyanines (Pcs) are presented as novel electron accepting building blocks of variable strengths with great potential for the exfoliation of graphite via their immobilization onto the basal plane of graphene in dimethylformamide (DMF) affording single layered and turbostratic graphene based . were fully characterized (AFM, TEM, Raman, steady-state and pump probe transient absorption spectroscopy) and were studied in terms of electron donor-acceptor interactions in the ground and excited states.
View Article and Find Full Text PDF