The Structural Genomics Consortium is an international open science research organization with a focus on accelerating early-stage drug discovery, namely hit discovery and optimization. We, as many others, believe that artificial intelligence (AI) is poised to be a main accelerator in the field. The question is then how to best benefit from recent advances in AI and how to generate, format and disseminate data to enable future breakthroughs in AI-guided drug discovery.
View Article and Find Full Text PDFIntroduction: Research driven by real-world clinical data is increasingly vital to enabling learning health systems, but integrating such data from across disparate health systems is challenging. As part of the NCATS National COVID Cohort Collaborative (N3C), the N3C Data Enclave was established as a centralized repository of deidentified and harmonized COVID-19 patient data from institutions across the US. However, making this data most useful for research requires linking it with information such as mortality data, images, and viral variants.
View Article and Find Full Text PDFIntroduction: With persistent incidence, incomplete vaccination rates, confounding respiratory illnesses, and few therapeutic interventions available, COVID-19 continues to be a burden on the pediatric population. During a surge, it is difficult for hospitals to direct limited healthcare resources effectively. While the overwhelming majority of pediatric infections are mild, there have been life-threatening exceptions that illuminated the need to proactively identify pediatric patients at risk of severe COVID-19 and other respiratory infectious diseases.
View Article and Find Full Text PDFThe National Center for Advancing Translational Science (NCATS) seeks to improve upon the translational process to advance research and treatment across all diseases and conditions and bring these interventions to all who need them. Addressing the racial/ethnic health disparities and health inequities that persist in screening, diagnosis, treatment, and health outcomes (e.g.
View Article and Find Full Text PDFBackground: Whole-genome sequencing data are available from several large studies across a variety of diseases and traits. However, massive storage and computation resources are required to use these data, and to achieve sufficient power for discoveries, harmonization of multiple cohorts is critical.
Objectives: The Accelerating Medicines Partnership Parkinson's Disease program has developed a research platform for Parkinson's disease (PD) that integrates the storage and analysis of whole-genome sequencing data, RNA expression data, and clinical data, harmonized across multiple cohort studies.
The Biomedical Research Informatics Computing System (BRICS) was developed to support multiple disease-focused research programs. Seven service modules are integrated together to provide a collaborative and extensible web-based environment. The modules-Data Dictionary, Account Management, Query Tool, Protocol and Form Research Management System, Meta Study, Data Repository and Globally Unique Identifier -facilitate the management of research protocols, to submit, process, curate, access and store clinical, imaging, and derived genomics data within the associated data repositories.
View Article and Find Full Text PDFSince its start, the Mammalian Gene Collection (MGC) has sought to provide at least one full-protein-coding sequence cDNA clone for every human and mouse gene with a RefSeq transcript, and at least 6200 rat genes. The MGC cloning effort initially relied on random expressed sequence tag screening of cDNA libraries. Here, we summarize our recent progress using directed RT-PCR cloning and DNA synthesis.
View Article and Find Full Text PDFINTRODUCTIONRNA interference (RNAi) is a powerful method for determining the role of specific genes during Drosophila embryogenesis. This protocol describes a technique by which Drosophila embryos can be injected with dsRNA in order to disrupt targeted gene function. The approach is straightforward, utilizing improved methods for injecting the dsRNA directly through the chorion of the embryo.
View Article and Find Full Text PDFINTRODUCTIONRNA interference (RNAi) is a powerful method for determining the role of specific genes during Drosophila embryogenesis. This protocol describes a method for collection of Drosophila embryos for RNA interference (RNAi) experiments. The embryos are collected in a simple, homemade apparatus, arrayed on prepared glass slides, and readied for injection.
View Article and Find Full Text PDFINTRODUCTIONRNA interference (RNAi) is a powerful method for determining the role of specific genes during Drosophila embryogenesis. It has been used in our laboratory to phenocopy a series of known mutations in Drosophila, including twist, engrailed, daughterless, Dmef2, and, to a lesser extent, white in the adult eye. This protocol describes the preparation of dsRNA by in vitro transcription of complementary strands of a cloned DNA fragment that codes for all or a portion of the gene of interest, followed by annealing of the transcribed RNA.
View Article and Find Full Text PDFINTRODUCTIONRNA interference (RNAi) is a powerful method for determining the role of specific genes during Drosophila embryogenesis. This protocol describes a method for RNAi in vivo using tissue-specific Gal-4 transgenes to induce dsRNA synthesis from an upstream activator sequence (UAS) vector. This vector contains the desired exonic inverted sequences representing the target gene (preferably more than 400 bp) separated by a unique spacer, the first intron of the actin 5C gene.
View Article and Find Full Text PDFThe National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project.
View Article and Find Full Text PDFDevelopmental expression of transduced mini-white(w) gene of Drosophila is sensitive to its flanking genomic enhancers. Taking advantage of this phenomenon, we mobilized a P lacW transposon and screened for new transposant lines which showed patterned expression of the mini-w gene in adult eyes. From a screen of about 1,000 independent P lacW transposant lines on the second chromosome, we identified 7 lines which showed patterned w expression in adult eyes.
View Article and Find Full Text PDF