Honey bees are globally distributed and have received increased attention due to their high economic and ecological value for pollination, their exceptional eusocial lifestyle and complex behavioral repertoire. Interestingly, most research on learning and memory in honey bees has been performed in the Western honey bee, Apis mellifera L., and other honey bee species were largely neglected.
View Article and Find Full Text PDFLearning visual cues is an essential capability of bees for vital behaviors such as orientation in space and recognition of nest sites, food sources and mating partners. To study learning and memory in bees under controlled conditions, the proboscis extension response (PER) provides a well-established behavioral paradigm. While many studies have used the PER paradigm to test olfactory learning in bees because of its robustness and reproducibility, studies on PER conditioning of visual stimuli are rare.
View Article and Find Full Text PDFBackground: The compound eyes of insects allow them to catch photons and convert the energy into electric signals. All compound eyes consist of numerous ommatidia, each comprising a fixed number of photoreceptors. Different ommatidial types are characterized by a specific set of photoreceptors differing in spectral sensitivity.
View Article and Find Full Text PDFMore than 100 years ago, Karl von Frisch showed that honeybee workers learn and discriminate colors. Since then, many studies confirmed the color learning capabilities of females from various hymenopteran species. Yet, little is known about visual learning and memory in males despite the fact that in most bee species males must take care of their own needs and must find rewarding flowers to obtain food.
View Article and Find Full Text PDF