Publications by authors named "Leonie Hecht"

Malaria blood stage parasites export a large number of proteins into their host erythrocyte to change it from a container of predominantly hemoglobin optimized for the transport of oxygen into a niche for parasite propagation. To understand this process, it is crucial to know which parasite proteins are exported into the host cell. This has been aided by the PEXEL/HT sequence, a five-residue motif found in many exported proteins, leading to the prediction of the exportome.

View Article and Find Full Text PDF

Plasmodium, the causative agent of malaria, is an obligate, intracellular, eukaryotic cell that invades, replicates, and differentiates within hepatocytes and erythrocytes. Inside a host cell, a second membrane delineates the developing pathogen in addition to the parasite plasma membrane, resulting in a distinct cellular compartment, termed parasitophorous vacuole (PV). The PV membrane (PVM) constitutes the parasite-host cell interface and is likely central to nutrient acquisition, host cell remodeling, waste disposal, environmental sensing, and protection from innate defense.

View Article and Find Full Text PDF

The protozoan parasite Plasmodium is transmitted by female Anopheles mosquitoes and undergoes obligatory development within a parasitophorous vacuole in hepatocytes before it is released into the bloodstream. The transition to the blood stage was previously shown to involve the packaging of exoerythrocytic merozoites into membrane-surrounded vesicles, called merosomes, which are delivered directly into liver sinusoids. However, it was unclear whether the membrane of these merosomes was derived from the parasite membrane, the parasitophorous vacuole membrane or the host cell membrane.

View Article and Find Full Text PDF