Publications by authors named "Leonie Driessen"

A preconcentrating surface-enhanced Raman scattering (SERS) sensor for the analysis of liquid-soaked tissue, tiny liquid droplets and thin liquid films without the necessity to collect the analyte is reported. The SERS sensor is based on a block-copolymer membrane containing a spongy-continuous pore system. The sensor's upper side is an array of porous nanorods having tips functionalized with Au nanoparticles.

View Article and Find Full Text PDF

In situ characterization of surfaces with tip-enhanced Raman spectroscopy (TERS) provides chemical and topographic information with high spatial resolution and submonolayer chemical sensitivity. To further the versatility of the TERS approach toward more complex systems such as biological membranes or energy conversion devices, adaptation of the technique to solid/liquid working conditions is essential. Here, we present a home-built side-illumination TERS setup design based on a commercial scanning tunneling microscope (STM) as a versatile, cost-efficient solution for TERS at solid/liquid interfaces.

View Article and Find Full Text PDF

We report on an efficient ultrasound based technique for lysing Escherichia coli and Pichia pastoris with oscillating cavitation bubbles in an integrated microfluidic system. The system consists of a meandering microfluidic channel and four piezoelectric transducers mounted on a glass substrate, with the ultrasound exposure and gas pressure regulated by an automatic control system. Controlled lysis of bacterial and yeast cells expressing green fluorescence protein (GFP) is studied with high-speed photography and fluorescence microscopy, and quantified with real-time polymerase chain reaction (qRT-PCR) and fluorescence intensity.

View Article and Find Full Text PDF