Veins in vascular networks, such as in blood vasculature or leaf networks, continuously reorganize, grow or shrink, to minimize energy dissipation. Flow shear stress on vein walls has been set forth as the local driver for a vein's continuous adaptation. Yet, shear feedback alone cannot account for the observed diversity of vein dynamics - a puzzle made harder by scarce spatiotemporal data.
View Article and Find Full Text PDFUnderstanding and controlling transport through complex media is central for a plethora of processes ranging from technical to biological applications. Yet, the effect of micro-scale manipulations on macroscopic transport dynamics still poses conceptual conundrums. Here, we demonstrate the predictive power of a conceptual shift in describing complex media by local micro-scale correlations instead of an assembly of uncorrelated minimal units.
View Article and Find Full Text PDF