Publications by authors named "Leonie Baier"

Stimulation in one sensory modality can affect perception in a separate modality, resulting in diverse effects including illusions in humans. This can also result in cross-modal facilitation, a process where sensory performance in one modality is improved by stimulation in another modality. For instance, a simple sound can improve performance in a visual task in both humans and cats.

View Article and Find Full Text PDF

During vocal communication, the spectro-temporal structure of vocalizations conveys important contextual information. Bats excel in the use of sounds for echolocation by meticulous encoding of signals in the temporal domain. We therefore hypothesized that for social communication as well, bats would excel at detecting minute distortions in the spectro-temporal structure of calls.

View Article and Find Full Text PDF

Many echolocating bats forage close to vegetation - a chaotic arrangement of prey and foliage where multiple targets are positioned behind one another. Bats excel at determining distance: they measure the delay between the outgoing call and the returning echo. In their auditory cortex, delay-sensitive neurons form a topographic map, suggesting that bats can resolve echoes of multiple targets along the distance axis - a skill crucial for the forage-amongst-foliage scenario.

View Article and Find Full Text PDF

The detection of silent, motionless prey sitting directly on leaves has long been considered a task impossible to solve with echolocation alone. Now, a new study has identified a strategy that lets bats do just that - with the help of the leaf.

View Article and Find Full Text PDF

Echo-imaging evolved as the main remote sense under lightless conditions. It is most precise in the third dimension (depth) rather than in the visually dominating dimensions of azimuth and elevation. We asked how the auditory system accesses spatial information in the dimensions of azimuth and elevation with a sensory apparatus that is fundamentally different from vision.

View Article and Find Full Text PDF
Flutter sensitivity in FM bats. Part I: delay modulation.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol

November 2018

Echolocating bats measure target distance by the time delay between call and echo. Target movement such as the flutter of insect wings induces delay modulations. Perception of delay modulations has been studied extensively in bats, but only concerning how well bats discriminate flutter frequencies, never with regard to flutter magnitude.

View Article and Find Full Text PDF

Bats use echolocation to detect targets such as insect prey. The echolocation call of frequency-modulating bats (FM bats) typically sweeps through a broad range of frequencies within a few milliseconds. The large bandwidth grants the bat high spatial acuity in depicting the target.

View Article and Find Full Text PDF

Locomotion and foraging on the wing require precise navigation in more than just the horizontal plane. Navigation in three dimensions and, specifically, precise adjustment of flight height are essential for flying animals. Echolocating bats drink from water surfaces in flight, which requires an exceptionally precise vertical navigation.

View Article and Find Full Text PDF

The stable carbon isotope ratio of exhaled CO(2) (delta(13)C(breath)) reflects the isotopic signature of the combusted substrate and is, therefore, suitable for the non-invasive collection of dietary information from free-ranging animals. However, delta(13)C(breath) is sensitive to changes in ingested food items and the mixed combustion of exogenous and endogenous substrates. Therefore, experiments under controlled conditions are pivotal for the correct interpretation of delta(13)C(breath) of free-ranging animals.

View Article and Find Full Text PDF

Absolute hearing thresholds in the spear-nosed bat Phyllostomus discolor have been determined both with psychophysical and neurophysiological methods. Neurophysiological data have been obtained from two different structures of the ascending auditory pathway, the inferior colliculus and the auditory cortex. Minimum auditory thresholds of neurons are very similar in both structures.

View Article and Find Full Text PDF