Angew Chem Int Ed Engl
December 2024
There is increasing interest in the discovery and application of molecular flasks-supramolecular host structures capable of catalyzing organic reactions. Reminiscent of enzymes due to possessing a host cavity akin to an active site, molecular flasks can exhibit complex catalytic mechanisms and in many cases provide selectivity not achievable in bulk solvent. In this Review, we aim to organize the increasingly diverse examples through a two-part structure.
View Article and Find Full Text PDFThe tail-to-head terpene (THT) cyclization is a biochemical process that gives rise to many terpene natural product skeletons encountered in nature. Historically, it has been difficult to achieve THT synthetically without using an enzyme. In this protocol, a hexameric resorcin[4]arene capsule acts as an artificial enzyme mimic to carry out biomimetic THT cyclizations and related carbocationic rearrangements.
View Article and Find Full Text PDFRecent years have seen revived interest in computer-assisted organic synthesis. The use of reaction- and neural-network algorithms that can plan multistep synthetic pathways have revolutionized this field, including examples leading to advanced natural products. Such methods typically operate on full, literature-derived 'substrate(s)-to-product' reaction rules and cannot be easily extended to the analysis of reaction mechanisms.
View Article and Find Full Text PDFSelf-assembled molecular capsules, host structures that form spontaneously when their building blocks are mixed, have been known since the 1990s. They share some basic similarities with enzyme pockets, as they feature defined hydrophobic binding pockets that are able to bind molecules of appropriate size and shape. The potential to utilize such host structures for catalysis has been explored since their discovery; however, applications that solve current challenges in synthetic organic chemistry have remained limited.
View Article and Find Full Text PDFTerpenes constitute one of the most structurally varied classes of natural products. A wide range of these structures are produced in nature by type I terpene cyclase enzymes from one single substrate. However, such reactivity has proven difficult to reproduce in solution with man-made systems.
View Article and Find Full Text PDFCovering: literature up to 2018 Terpenes are a class of natural products characterized by remarkable structural diversity. Much of this diversity arises biosynthetically from a handful of linear precursors through the so-called tail-to-head terpene cyclization reaction. This reaction is one of the most complex observed in nature, and historically attempts to replicate it with non-enzymatic means have met with little success.
View Article and Find Full Text PDF