Publications by authors named "Leonidas Perez-Estrada"

Livestock wastewater (LWW) has a complex characteristic of high organic matter content, metals, nutrients, and pharmaceutical compounds. Advanced oxidation processes (AOP) are a potential option for treating this wastewater. This study evaluated real LWW and the performance of UV/HO and UV/peroxymonosulfate (UV/PMS) for its treatment.

View Article and Find Full Text PDF

The oil sands industry generates large volumes of oil sands process water (OSPW). There is an urgent need for OSPW treatment to reduce process water inventories and to support current reclamation approaches. This study discusses how efficient ozone (O)-based combined advanced oxidation processes (AOPs), including hydrogen peroxide (HO) and UV-C, are at achieving mineralization while reducing the toxicity arising from such organic components as naphthenic acids (NAs) in OSPW.

View Article and Find Full Text PDF

Oil sands process-affected water (OSPW) is a major environmental issue due to its acute and chronic toxicity to aquatic life. Advanced oxidation processes are promising treatments to successfully degrade toxic OSPW compounds. This study applied high resolution mass spectrometry to detect over 1000 compounds in OSPW samples after treatments including general ozonation, and ozone with carbonate, tert-butyl-alcohol, carbonate/tert-butyl-alcohol, tetranitromethane, or iron.

View Article and Find Full Text PDF

The extraction of bitumen from the oil sands in Canada generates tonnes of mature fine tailings (MFT), consisting of a mineral matrix of sand, clay, and water, which without treatment requires thousands of years to fully consolidate. We assessed the performance of a novel ozonation method designed to enhance the settling of MFT and explored the mechanisms involved. The solid content of MFT obtained from oil sands tailings was adjusted to 1, 3, 5 wt % with water before applying 15, 30, and 60 min of ozonation.

View Article and Find Full Text PDF

Oil sands process-affected water (OSPW) is a toxic and poorly biodegradable mixture of sand, silt, heavy metals, and organics. In this study, qualitative and quantitative comparisons of naphthenic acids (NAs) were done using ultraperformance liquid chromatography time-of-flight mass spectrometry (UPLC TOF-MS), Fourier transform ion cyclotron resonance (FT-ICR) MS, and ion mobility spectrometry (IMS). The unique combination of these analyses allowed for the determination and correlation of NAs, oxidized NAs, and heteroatom (sulfur or nitrogen) NAs.

View Article and Find Full Text PDF

The oil sands industry faces significant challenges in developing effective remediation technologies for process-affected water stored in tailings ponds. Naphthenic acids, a complex mixture of cycloaliphatic carboxylic acids, have been of particular concern because they concentrate in tailings ponds and are a component of the acutely toxic fraction of process water. Ozone treatment has been demonstrated as an effective means of rapidly degrading naphthenic acids, reducing process water toxicity, and increasing its biodegradability following seeding with the endogenous process water bacteria.

View Article and Find Full Text PDF

Oil sands process-affected water (OSPW) is the water contained in tailings impoundment structures in oil sands operations. There are concerns about the environmental impacts of the release of OSPW because of its toxicity. In this study, ozonation followed by biodegradation was used to remediate OSPW.

View Article and Find Full Text PDF

Fluorescence spectrophotometry has been proposed as a quick screening technique for the measurement of naphthenic acids (NAs). To evaluate the feasibility of this application, the fluorescence emission spectra of NAs extracted from three oil sands process water sources were compared with that of commercial NAs. The NAs resulting from the bitumen extraction process cannot be differentiated because of the similarity of the fluorescence spectra.

View Article and Find Full Text PDF

To examine the effects of the ozonation process (as an oxidation treatment for water and wastewater treatment applications) on microbial biofilm formation and biodegradability of organic compounds present in oil sands process-affected water (OSPW), biofilm reactors were operated continuously for 6weeks. Two types of biofilm substrate materials: polyethylene (PE) and polyvinylchloride (PVC), and two types of OSPW-fresh and ozonated OSPWs-were tested. Endogenous microorganisms, in OSPW, quickly formed biofilms in the reactors.

View Article and Find Full Text PDF

The large volume of oil sands process-affected water (OSPW) produced by the oil sands industry in Northern Alberta, Canada, is an environmental concern. The toxicity of OSPW has been attributed to a complex mixture of naturally occurring acids, including naphthenic acids (NAs). Highly cyclic or branched NAs are highly biopersistent in tailings ponds, thus understanding structure-reactivity relationship for NAs is very important for OSPW reclamation.

View Article and Find Full Text PDF

Oil sands process-affected water (OSPW) produced by the surface mining oil sands industry in Alberta, Canada, is toxic to aquatic organisms. Ozonation of OSPW attenuates this toxicity. Altered concentrations of sex steroid hormones, impaired reproductive performance, and less prominent secondary sexual characteristics have been reported for fish exposed to OSPW.

View Article and Find Full Text PDF

Large volumes of oil sands process-affected water (OSPW) are produced during the extraction of bitumen from oil sands in Alberta, Canada. The degradation of a model naphthenic acid, cyclohexanoic acid (CHA), and real naphthenic acids (NAs) from OSPW were investigated in the presence of peroxydisulfate (S(2)O(8)(2-)) and zerovalent iron (ZVI). For the model compound CHA (50 mg/L), in the presence of ZVI and 500 mg/L S(2)O(8)(2-), the concentration decreased by 45% after 6 days of treatment at 20 °C, whereas at 40, 60, and 80 °C the concentration decreased by 20, 45 and 90%, respectively, after 2 h of treatment.

View Article and Find Full Text PDF

We evaluated whether ozonation ameliorated the effects of the organic fraction of oil sands process water (OSPW) on immune functions of mice. Ozonation of OSPW eliminated the capacity of its organic fraction to affect various mouse bone marrow-derived macrophage (BMDM) functions in vitro. These included the production of nitric oxide and the expression of inducible nitric oxide synthase, the production of reactive oxygen intermediates and the expression of NADPH oxidase subunits, phagocytosis, and the expression of pro-inflammatory cytokine genes.

View Article and Find Full Text PDF

The Athabasca Oil Sands industry produces large volumes of oil sands process-affected water (OSPW) as a result of bitumen extraction and upgrading processes. Constituents of OSPW include chloride, naphthenic acids (NAs), aromatic hydrocarbons, and trace heavy metals, among other inorganic and organic compounds. To address the environmental issues associated with the recycling and/or safe return of OSPW into the environment, water treatment technologies are required.

View Article and Find Full Text PDF

Coagulation/flocculation (CF) by use of alum and cationic polymer polyDADMAC, was performed as a pretreatment for remediation of oil sands process-affected water (OSPW). Various factors were investigated and the process was optimized to improve efficiency of removal of organic carbon and turbidity. Destabilization of the particles occurred through charge neutralization by adsorption of hydroxide precipitates.

View Article and Find Full Text PDF

Large volumes of oil sands process-affected water (OSPW) are produced in northern Alberta by the surface mining oil sands industry. Naphthenic acids (NAs) are a complex mixture of persistent organic acids that are believed to contribute to the toxicity of OSPW. In situ microbial biodegradation strategies are slow and not effective at eliminating chronic aquatic toxicity, thus there is a need to examine alternative remediation techniques.

View Article and Find Full Text PDF

Naphthenic acids (NAs) are believed to be the major toxic component of oil sands process water (OSPW). Different OSPW preparations have distinct NA compositions, and additional organics, that differ from the commercial NAs (C-NAs) often used for toxicology studies. To evaluate whether C-NAs are an adequate model to study OSPW toxicity in complex organisms, we compared the effects of C-NAs and the extractable organic fraction of OSPW (OSPW-OF) on mice immune mechanisms.

View Article and Find Full Text PDF

This is the first report showing that the organic fraction of oil sands process water (OSPW-OF), and commercial naphthenic acids (C-NAs), cause immunotoxicity. The exposure of mouse bone marrow-derived macrophages (BMDM) to different amounts of C-NAs or OSPW-OF, did not affect cell viability in vitro. We examined whether exposure of BMDM to C-NAs or OSPW-OF affected various antimicrobial responses of these cells.

View Article and Find Full Text PDF

Reactive azo dye Procion Red H-E7B solutions have been submitted to solar-assisted photo-Fenton degradation. The solution color quickly disappears, indicating a fast degradation of the azo group. Nevertheless, complete DOC removal was not accomplished, in accordance with the presence of resistant triazine rings at the end of the reaction.

View Article and Find Full Text PDF

This paper reports on the combined solar photo-Fenton/biological treatment of an industrial effluent (initial total organic carbon, TOC, around 500mgL(-1)) containing a non-biodegradable organic substance (alpha-methylphenylglycine at 500mgL(-1)), focusing on pilot plant tests performed for design of an industrial plant, the design itself and the plant layout. Pilot plant tests have demonstrated that biodegradability enhancement is closely related to disappearance of the parent compound, for which a certain illumination time and hydrogen peroxide consumption are required, working at pH 2.8 and adding Fe(2+)=20mgL(-1).

View Article and Find Full Text PDF

In this paper, we present the photo-Fenton treatment in a solar pilot-plant scale of several EU priority hazardous substances (Alachlor, Atrazine, Chlorfenvinphos, Diuron and Isoproturon) dissolved in water. The results have been evaluated not only from the point of view of contaminant disappearance and mineralisation, but also of toxicity reduction and enhancement of biodegradability. Degradation was monitored by total organic carbon, pesticide concentration by HPLC-UV, inorganics released by ion chromatography, and biodegradability by the Zahn-Wellens (Z-W) test.

View Article and Find Full Text PDF

In recent years, the presence of pharmaceuticals in the aquatic environment has been of growing interest. These new contaminants are important because many of them are not degraded under the typical biological treatments applied in the wastewater treatment plants and represent a continuous input into the environment. Thus, compounds such as diclofenac are present in surface waters in all Europe and a crucial need for more enhanced technologies that can reduce its presence in the environment has become evident.

View Article and Find Full Text PDF