Background: Exposures to polyaromatic hydrocarbons (PAHs) contribute to cancer in the fire service. Fire investigators are involved in evaluations of post-fire scenes. In the US, it is estimated that there are up to 9000 fire investigators, compared to approximately 1.
View Article and Find Full Text PDFTypical protein biosensors employ chemical or genetic labeling of the protein, thus introducing an extraneous molecule to the wild-type parent protein, often changing the overall structure and properties of the protein. While these labeling methods have proven successful in many cases, they also have a series of disadvantages associated with their preparation and function. An alternative route for labeling proteins is the incorporation of unnatural amino acid (UAA) analogues, capable of acting as a label, into the structure of a protein.
View Article and Find Full Text PDFPancreatic islet cells, and in particular insulin-producing beta cells, are centrally involved in the pathogenesis of diabetes mellitus. These cells are of paramount importance for the endocrine control of glycemia and glucose metabolism. In Type 1 Diabetes, islet beta cells are lost due to an autoimmune attack.
View Article and Find Full Text PDFCarcinogens are emitted in significant quantities at fire scenes and are a major contributor in the increased cancer risk observed in firefighters when compared to the general population. A knowledge gap exists in the current understanding of the distribution of these toxic compounds within a localized fire incident response arena. Here, we employ stationary silicone-based passive samplers at controlled live fire trainings to evaluate the deposition behavior of polyaromatic hydrocarbons (PAHs) emitted by fires.
View Article and Find Full Text PDFThe development of photocatalytic materials that exploit visible light is imperative for their sustainable application in environmental remediation. While a variety of approaches have been attempted, facile routes to achieve such structures remain limited. In this contribution, a direct route for the production of a SrTiO/BiOBr/Pd heterojunction is presented that employs a low temperature, sustainable production method.
View Article and Find Full Text PDFCH-hydrogen bonding provides access to new building blocks for making macrocyclic ionophores with high degrees of preorganization and selective anion recognition. In this study, an anion-binding ionophore in the shape of a clamshell (ClS) was employed that is composed of two cyanostar (CNstar) macrocycles with preorganized cavities linked with a 12-carbon chain. This ionophore allows for anion complexation by CH-hydrogen bonding.
View Article and Find Full Text PDFA mediator-free, non-enzymatic electrochemical biosensor was constructed by covalent immobilization of a genetically engineered periplasmic glutamate binding protein onto gold nanoparticle-modified, screen-printed carbon electrodes (GluBP/AuNP/SPCE) for the purpose of direct measurement of glutamate levels. Glutamate serves as the predominant excitatory neurotransmitter in the central nervous system. As high levels of glutamate are an indicator of many neurologic disorders, there is a need for advancements in glutamate detection technologies.
View Article and Find Full Text PDFCompared to the general population, firefighters are known to sustain greater levels of exposure to hazardous compounds, despite their personal protective equipment, also known as turnout gear. Among the most significant toxins that firefighters are chronically exposed to are polycyclic aromatic hydrocarbons (PAHs). Additionally, firefighters have also been noted to exhibit an increased incidence of certain types of cancer.
View Article and Find Full Text PDFCyanostar, a pentagonal macrocyclic compound with an electropositive cavity, binds anions with CH-based hydrogen bonding. The large size of the cyanostar's cavity along with its planarity favor formation of 2:1 sandwich complexes with larger anions, like perchlorate, ClO, relative to the smaller chloride. We also show that cyanostar is selective for ClO over the bulky salicylate anions by using NMR titration studies to measure affinity.
View Article and Find Full Text PDFElectrospray ionization mass spectrometry ESI-MS is a powerful technique for the characterization of macromolecules and their noncovalent binding with guest ions. We herein evaluate the feasibility of using ESI-MS as a screening tool for predicting potentiometric selectivities of ionophores. Ion-selective electrodes based on the cyclic peptide, cyclosporin A, were developed, and their potentiometric selectivity pattern was evaluated.
View Article and Find Full Text PDFWe report a synthetic approach to form cubic CuO/Pd composite structures and demonstrate their use as photocatalytic materials for tandem catalysis. Pd nanoparticles were deposited onto CuO cubes, and their tandem catalytic reactivity was studied via the reductive dehalogenation of polychlorinated biphenyls. The Pd content of the materials was gradually increased to examine its influence on particle morphology and catalytic performance.
View Article and Find Full Text PDFGuánica Bay, located in southwestern Puerto Rico, has suffered oil spills and other pollution discharges since the 1960s. Previous research showed elevated concentrations of polychlorinated biphenyls (PCBs) in coral reef and sediment. This research examined PCB concentrations in sediment and fish.
View Article and Find Full Text PDFWe report a synthetic approach to form octahedral Cu2O microcrystals with a tunable edge length and demonstrate their use as catalysts for the photodegradation of aromatic organic compounds. In this particular study, the effects of the Cu(2+) and reductant concentrations and stoichiometric ratios were carefully examined to identify their roles in controlling the final material composition and size under sustainable reaction conditions. Varying the ratio and concentrations of Cu(2+) and reductant added during the synthesis determined the final morphology and composition of the structures.
View Article and Find Full Text PDFTransitioning energy-intensive and environmentally intensive processes toward sustainable conditions is necessary in light of the current global condition. To this end, photocatalytic processes represent new approaches for H2 generation; however, their application toward tandem catalytic reactivity remains challenging. Here, we demonstrate that metal oxide materials decorated with noble metal nanoparticles advance visible light photocatalytic activity toward new reactions not typically driven by light.
View Article and Find Full Text PDFThe nature of the plasticizer plays a pivotal role in the analytical performance of polymer membrane ion sensors. Conventional plasticizers suffer leaching or migration from the membrane and exudation, both of which could limit the lifetime of sensors based on plasticized membranes. Herein, we describe the use of polyester sebacate (PES), a model polymeric plasticizer, in the preparation of poly (vinyl chloride) (PVC) membrane ion-selective electrodes (ISEs) using valinomycin as ionophore.
View Article and Find Full Text PDFThe objective of this work was to demonstrate the bioactivity of parathyroid hormone (1-34) (PTH) delivered through a single molecule of bisphosphonate to improve tissue/cell interactions. Bifunctional hydrazine-bisphosphonates (HBPs) with varying length and lipophilicity were used as a drug delivery vehicle. PTH was oxidized with periodate treatment to obtain an N-terminal aldehyde that was then conjugated to HBPs.
View Article and Find Full Text PDFA new class of bimetallic materials based on palladium-decorated iron nanotubes is described that demonstrates high reactivity in dechlorination reactions. This high dechlorination efficiency was attributed to the high surface area to volume ratio of the hollow nanotubes structure. Herein, we evaluated the effect of different conditions, such as the nanotube size, and the palladium loading on the efficiency of the dechlorination of PCB 77, a model coplanar polychlorinated biphenyl (PCB), by the Pd/Fe bimetallic nanotubes system.
View Article and Find Full Text PDFHydroxylated polychlorinated biphenyls (OH-PCBs) are an important class of contaminants that mainly originate from polychlorinated biphenyl metabolism. They may conceivably be as dangerous and persistent as the parent compounds; most prominently, OH-PCBs are endocrine disruptors. Due to increasing evidence of the presence of OH-PCBs in the environment and in living organisms, including humans, and of their toxicity, methods of detection for OH-PCBs are needed in the environmental and medical fields.
View Article and Find Full Text PDFOne-dimensional iron metallic nanotubes were prepared by electroless deposition within the pores of polycarbonate (PC) membranes. The longitudinal nucleation of the nanotubes along the pore walls was achieved by mounting the PC membrane between two halves of a U-shaped reaction tube. Palladium nanoparticles were post-deposited on the inner wall of the nanotubes.
View Article and Find Full Text PDFOriented immobilization of proteins is an important step in creating protein-based functional materials. In this study, a method was developed to orient proteins on hydroxyapatite (HA) surfaces, a widely used bone implant material, to improve protein bioactivity by employing enhanced green fluorescent protein (EGFP) and β-lactamase as model proteins. These proteins have a serine or threonine at their N-terminus that was oxidized with periodate to obtain a single aldehyde group at the same location, which can be used for the site-specific immobilization of the protein.
View Article and Find Full Text PDFBackground: The paradigm of human risk assessment includes many variables that must be viewed collectively in order to improve human health and prevent chronic disease. The pathology of chronic diseases is complex, however, and may be influenced by exposure to environmental pollutants, a sedentary lifestyle, and poor dietary habits. Much of the emerging evidence suggests that nutrition can modulate the toxicity of environmental pollutants, which may alter human risks associated with toxicant exposures.
View Article and Find Full Text PDFPast work has shown that Treponema pallidum, the causative agent of syphilis, binds host fibronectin (FN). FN and other host proteins are believed to bind to rare outer membrane proteins (OMPs) of T. pallidum, and it is postulated that this interaction may facilitate cell attachment and mask antigenic targets on the surface.
View Article and Find Full Text PDFSkeletal diseases have a major impact on the worldwide population and economy. Although several therapeutic agents and treatments are available for addressing bone diseases, they are not being fully utilized because of their uptake in nontargeted sites and related side effects. Active targeting with controlled delivery is an ideal approach for treatment of such diseases.
View Article and Find Full Text PDFWe described the synthesis and characterization of a new class of bimetallic nanotubes based on Pd/Fe and demonstrated their efficacy in the dechlorination of PCB 77, a polychlorinated biphenyl. Onedimensional iron metal nanotubes of different diameters were prepared by electroless deposition within the pores of PVP-coated polycarbonate membranes using a simple technique under ambient conditions. The longitudinal nucleation of the nanotubes along the pore walls was achieved by mounting the PC membrane between two halves of a U-shape reaction tube.
View Article and Find Full Text PDF