Publications by authors named "Leonid Teytelman"

Our current understanding of biology is heavily based on a small number of genetically tractable model organisms. Most eukaryotic phyla lack such experimental models, and this limits our ability to explore the molecular mechanisms that ultimately define their biology, ecology, and diversity. In particular, marine protists suffer from a paucity of model organisms despite playing critical roles in global nutrient cycles, food webs, and climate.

View Article and Find Full Text PDF

The Internet has enabled online social interaction for scientists beyond physical meetings and conferences. Yet despite these innovations in communication, dissemination of methods is often relegated to just academic publishing. Further, these methods remain static, with subsequent advances published elsewhere and unlinked.

View Article and Find Full Text PDF

The detailed know-how to implement research protocols frequently remains restricted to the research group that developed the method or technology. This knowledge often exists at a level that is too detailed for inclusion in the methods section of scientific articles. Consequently, methods are not easily reproduced, leading to a loss of time and effort by other researchers.

View Article and Find Full Text PDF

Chromatin immunoprecipitation (ChIP) is the gold-standard technique for localizing nuclear proteins in the genome. We used ChIP, in combination with deep sequencing (Seq), to study the genome-wide distribution of the Silent information regulator (Sir) complex in Saccharomyces cerevisiae. We analyzed ChIP-Seq peaks of the Sir2, Sir3, and Sir4 silencing proteins and discovered 238 unexpected euchromatic loci that exhibited enrichment of all three.

View Article and Find Full Text PDF

Although much has been done to elucidate the biochemistry of signal transduction and gene regulatory pathways, it remains difficult to understand or predict quantitative responses. We integrate single-cell experiments with stochastic analyses, to identify predictive models of transcriptional dynamics for the osmotic stress response pathway in Saccharomyces cerevisiae. We generate models with varying complexity and use parameter estimation and cross-validation analyses to select the most predictive model.

View Article and Find Full Text PDF

Silencing at the HMR and HML loci in Saccharomyces cerevisiae requires recruitment of Sir proteins to the HML and HMR silencers. The silencers are regulatory sites flanking both loci and consisting of binding sites for the Rap1, Abf1, and ORC proteins, each of which also functions at hundreds of sites throughout the genome in processes unrelated to silencing. Interestingly, the sequence of the binding site for Rap1 at the silencers is distinct from the genome-wide binding profile of Rap1, being a weaker match to the consensus, and indeed is bound with low affinity relative to the consensus sequence.

View Article and Find Full Text PDF

We developed a cost-effective genome-scale PCR-based method for high-definition DNA FISH (HD-FISH). We visualized gene loci with diffraction-limited resolution, chromosomes as spot clusters and single genes together with transcripts by combining HD-FISH with single-molecule RNA FISH. We provide a database of over 4.

View Article and Find Full Text PDF

Co-evolution of transcriptional regulatory proteins and their sites of action has been often hypothesized but rarely demonstrated. Here we provide experimental evidence of such co-evolution in yeast silent chromatin, a finding that emerged from studies of hybrids formed between two closely related Saccharomyces species. A unidirectional silencing incompatibility between S.

View Article and Find Full Text PDF

Chromatin has an impact on recombination, repair, replication, and evolution of DNA. Here we report that chromatin structure also affects laboratory DNA manipulation in ways that distort the results of chromatin immunoprecipitation (ChIP) experiments. We initially discovered this effect at the Saccharomyces cerevisiae HMR locus, where we found that silenced chromatin was refractory to shearing, relative to euchromatin.

View Article and Find Full Text PDF

Heterochromatin renders domains of chromosomes transcriptionally silent and, due to clonal variation in its formation, can generate heritably distinct populations of genetically identical cells. Saccharomyces cerevisiae's Sir1 functions primarily in the establishment, but not the maintenance, of heterochromatic silencing at the HMR and HML loci. In several Saccharomyces species, we discovered multiple paralogs of Sir1, called Kos1-Kos4 (Kin of Sir1).

View Article and Find Full Text PDF

Subtelomeric DNA in budding yeasts, like metazoan heterochromatin, is gene poor, repetitive, transiently silenced, and highly dynamic. The rapid evolution of subtelomeric regions is commonly thought to arise from transposon activity and increased recombination between repetitive elements. However, we found evidence of an additional factor in this diversification.

View Article and Find Full Text PDF

Gramene (http://www.gramene.org/) is a comparative genome database for cereal crops and a community resource for rice.

View Article and Find Full Text PDF

A total of 2414 new di-, tri- and tetra-nucleotide non-redundant SSR primer pairs, representing 2240 unique marker loci, have been developed and experimentally validated for rice (Oryza sativa L.). Duplicate primer pairs are reported for 7% (174) of the loci.

View Article and Find Full Text PDF

Gramene (http://www.gramene.org) is a comparative genome mapping database for grasses and a community resource for rice (Oryza sativa).

View Article and Find Full Text PDF

Gramene (http://www.gramene.org) is a comparative genome mapping database for grasses and a community resource for rice.

View Article and Find Full Text PDF