A first-principles study of the atomic structure and electron density distribution at the Zr/Nb interface under the influence of helium impurities and helium-vacancy complexes was performed using the optimised Vanderbilt pseudopotential method. For the determination of the preferred positions of the helium atom, the vacancy and the helium-vacancy complex at the interface, the formation energy of the Zr-Nb-He system has been calculated. The preferred positions of the helium atoms are in the first two atomic layers of Zr at the interface, where helium-vacancy complexes form.
View Article and Find Full Text PDFIn this paper, we study the influence of hydrogen concentration on the binding energies in magnesium hydrides. The impact of aluminum atom addition on the hydrogenation behavior of magnesium was theoretically and experimentally defined. Doping Al into the Mg lattice allows the uniform hydrogen distribution in both the fcc and bcc Mg lattice at a low hydrogen concentration (H:Mg < 0.
View Article and Find Full Text PDFHydrogen separation membranes are one of the most promising technologies for hydrogen purification. The development of high-entropy alloys (HEAs) for hydrogen separation membranes is driven by a "cocktail effect" of elements with different hydrogen affinities to prevent hydride formation and retain high permeability due to the single-phase BCC structure. In this paper, equimolar and non-equimolar Nb-Ni-Ti-Zr-Co high entropy alloys were fabricated by arc melting.
View Article and Find Full Text PDFRadiation damage is one of the significant factors limiting the operating time of many structural materials working under extreme conditions. One of the promising directions in the development of materials that are resistant to radiation damage and have improved physical and mechanical properties is the creation of nanoscale multilayer coatings (NMCs). The paper is devoted to the experimental comprehension of changes in the defect structure and mechanical properties of nanoscale multilayer coatings (NMCs) with alternating layers of Zr and Nb under irradiation.
View Article and Find Full Text PDFThe study of hydrogen storage properties of Mg-based thin films is of interest due to their unique composition, interface, crystallinity, and high potential for use in hydrogen-storage systems. Alloying Mg with Al leads to the destabilization of the magnesium hydride reducing the heat of reaction, increases the nucleation rate, and decreases the dehydriding temperature. The purpose of our study is to reveal the role of the aluminum atom addition in hydrogen adsorption and accumulation in the Mg-H solid solution.
View Article and Find Full Text PDF