Publications by authors named "Leonid Rusevich"

The results of first-principles calculations of the structural, electronic, elastic, vibrational, dielectric and optical properties, as well as the Raman and infrared (IR) spectra, of potassium hexafluorosilicate (KSiF; KSF) crystal are discussed. KSF doped with manganese atoms (KSF:Mn) is known for its ability to function as a phosphor in white LED applications due to the efficient red emission from Mn⁴⁺ activator ions. The simulations were performed using the CRYSTAL23 computer code within the linear combination of atomic orbitals (LCAO) approximation of the density functional theory (DFT).

View Article and Find Full Text PDF

While the bulk strontium titanate (STO) crystal characteristics are relatively well known, ultrathin perovskites' nanostructure, chemical composition, and crystallinity are quite complex and challenging to understand in detail. In our study, the DFT methods were used for modelling the Raman spectra of the STO bulk (space group I4/mcm) and 5-21-layer thin films (layer group p4/mbm) in tetragonal phase with different thicknesses ranging from ~0.8 to 3.

View Article and Find Full Text PDF

Various photocatalysts are being currently studied with the aim of increasing the photocatalytic efficiency of water splitting for production of hydrogen as a fuel and oxygen as a medical gas. A noticeable increase of hydrogen production was found recently experimentally on the anisotropic faces (facets) of strontium titanate (SrTiO, STO) nanoparticles. In order to identify optimal sites for water splitting, the first principles calculations of the Raman vibrational spectrum of the bulk and stepped (facet) surface of a thin STO film with adsorbed water derivatives were performed.

View Article and Find Full Text PDF

We present the results of a detailed first principles study of the piezoelectric properties of the (SrTiO)/(BaTiO) heterostructure using the 3D STO/BTO superlattice model. The atomic basis set, hybrid functionals and slabs with different numbers of STO and BTO layers were used. The interplay between ferroelectric (FE) and antiferrodistortive (AFD) displacements is carefully analyzed.

View Article and Find Full Text PDF

The colloidal processing of nearly monodisperse and highly crystalline single-domain ferroelectric or ferromagnetic nanocubes is a promising route to produce superlattice structures for integration into next-generation devices, whereas controlling the local behaviour of nanocrystals is imperative for fabricating highly-ordered assemblies. The current picture of nanoscale polarization in individual nanocrystals suggests a potential presence of a significant dipolar interaction, but its role in the condensation of nanocubes is unknown. We simulate the self-assembly of colloidal dipolar nanocubes under osmotic compression and perform the microstructural characterization of their densified ensembles.

View Article and Find Full Text PDF

Dynamics-function correlations are usually inferred when molecular mobility and protein function are simultaneously impaired at characteristic temperatures or hydration levels. In this sense, excitation energy transfer in the photosynthetic light-harvesting complex II (LHC II) is an untypical example because it remains fully functional even at cryogenic temperatures relying mainly on interactions of electronic states with protein vibrations. Here, we study the vibrational and conformational protein dynamics of monomeric and trimeric LHC II from spinach using inelastic neutron scattering (INS) in the temperature range of 20-305 K.

View Article and Find Full Text PDF

An enhancement of the piezoelectric properties of lead-free materials, which allow conversion of mechanical energy into electricity, is a task of great importance and interest. Results of first-principles calculations of piezoelectric/electromechanical properties of the BaSrTiO (BSTO) ferroelectric solid solution with a perovskite structure are presented and discussed. Calculations are performed within the linear combination of atomic orbitals (LCAO) approximation and periodic-boundary conditions, using the advanced hybrid functionals of density functional theory (DFT).

View Article and Find Full Text PDF

Light harvesting and excitation energy transfer in photosynthesis are relatively well understood at cryogenic temperatures up to ∼100 K, where crystal structures of several photosynthetic complexes including the major antenna complex of green plants (LHC II) are available at nearly atomic resolution. The situation is much more complex at higher or even physiological temperatures, because the spectroscopic properties of antenna complexes typically undergo drastic changes above ∼100 K. We have addressed this problem using a combination of quasielastic neutron scattering (QENS) and optical spectroscopy on native LHC II and mutant samples lacking the Chl 2/Chl a 612 pigment molecule.

View Article and Find Full Text PDF

Neutron spectroscopy provides experimental data on time-dependent trajectories, which can be directly compared to molecular dynamics simulations. Its importance in helping us to understand biological macromolecules at a molecular level is demonstrated by the results of a literature survey over the last two to three decades. Around 300 articles in refereed journals relate to neutron scattering studies of biological macromolecular dynamics, and the results of the survey are presented here.

View Article and Find Full Text PDF