Acid-base equilibria and interfacial electrostatic properties of hydrated mesoporous and nanostructured alumina powders are determining factors for the use of these materials in heterogeneous catalysis and as a sorption media for filtration and chromatographic applications including life sciences. Here spin probe electron paramagnetic resonance spectroscopy of pH-sensitive nitroxides was employed to evaluate the surface charge and interfacial acid-base equilibria at the pore surface of mesoporous powders of α-AlO, γ-AlO, AlO × nHO, and basic γ-AlO and nanostructured AlO in the form of pristine materials and modified with aluminum-tri-sec-butoxide, hydroxyaluminum glycerate, and several phospholipids. A new pH-sensitive nitroxide probe, 4-dimethylamino-5,5-dimethyl-2-(4-(chloromethyl)phenyl)-2-ethyl-2,5-dihydro-1H-imidazol-1-oxyl hydrochloride semihydrate (nitroxide R1), has been synthesized and characterized.
View Article and Find Full Text PDFBackground: The search for biomarkers in Parkinson's disease (PD) is crucial to identify the disease early and monitor the effectiveness of neuroprotective therapies. We aim to assess whether a gene signature could be detected in blood from early/mild PD patients that could support the diagnosis of early PD, focusing on genes found particularly altered in the substantia nigra of sporadic PD.
Results: The transcriptional expression of seven selected genes was examined in blood samples from 62 early stage PD patients and 64 healthy age-matched controls.