Am J Physiol Heart Circ Physiol
June 2007
Alternans of cardiac repolarization is associated with arrhythmias and sudden death. At the cellular level, alternans involves beat-to-beat oscillation of the action potential (AP) and possibly Ca(2+) transient (CaT). Because of experimental difficulty in independently controlling the Ca(2+) and electrical subsystems, mathematical modeling provides additional insights into mechanisms and causality.
View Article and Find Full Text PDFHerein, the well-known cable equation for nonmyelinated axon model is extended analytically for myelinated axon formulation. The myelinated membrane conductivity is represented via the Fourier series expansion. The classical cable equation is thereby modified into a linear second order ordinary differential equation with periodic coefficients, known as Hill's equation.
View Article and Find Full Text PDFThe quasi-static electromagnetic field interaction with three-dimensional infinite-cylindrical cell is investigated for both intracellular (IPS) and extracellular (EPS) current point-source excitation. The induced transmembrane potential (TMP), expressed conventionally via Green's function, may alternatively be expanded into a faster-converging representation using a complex contour integration, consisting of an infinite-discrete set of exponentially decaying oscillating modes (corresponding to complex eigenvalues) and a continuous source-mode convolution integral. The dominant contributions for both the IPS and EPS problems are obtained in simple closed-form expressions, including well documented special mathematical functions.
View Article and Find Full Text PDF