Publications by authors named "Leonid L. Rubchinsky"

Synchronization of neural activity in the gamma frequency band is associated with various cognitive phenomena. Abnormalities of gamma synchronization may underlie symptoms of several neurological and psychiatric disorders such as schizophrenia and autism spectrum disorder. Properties of neural oscillations in the gamma band depend critically on the synaptic properties of the underlying circuits.

View Article and Find Full Text PDF

The subthalamic nucleus (STN) has an important role in the pathophysiology of the basal ganglia in Parkinson's disease. The ability of STN cells to generate bursting rhythms under either transient or sustained hyperpolarization may underlie the excessively synchronous beta rhythms observed in Parkinson's disease. In this study, we developed a conductance-based single compartment model of an STN neuron, which is able to generate characteristic activity patterns observed in experiments including hyperpolarization-induced bursts and post-inhibitory rebound bursts.

View Article and Find Full Text PDF

Synchronization in neural systems plays an important role in many brain functions. Synchronization in the gamma frequency band (30-100 Hz) is involved in a variety of cognitive phenomena; abnormalities of the gamma synchronization are found in schizophrenia and autism spectrum disorder. Frequently, the strength of synchronization is not high, and synchronization is intermittent even on short time scales (few cycles of oscillations).

View Article and Find Full Text PDF

Neural synchrony in the brain is often present in an intermittent fashion, i.e., there are intervals of synchronized activity interspersed with intervals of desynchronized activity.

View Article and Find Full Text PDF

Neural synchrony in the brain at rest is usually variable and intermittent, thus intervals of predominantly synchronized activity are interrupted by intervals of desynchronized activity. Prior studies suggested that this temporal structure of the weakly synchronous activity might be functionally significant: many short desynchronizations may be functionally different from few long desynchronizations even if the average synchrony level is the same. In this study, we used computational neuroscience methods to investigate the effects of spike-timing dependent plasticity (STDP) on the temporal patterns of synchronization in a simple model.

View Article and Find Full Text PDF

The mechanisms and properties of synchronization of oscillating ecological populations attract attention because it is a fairly common phenomenon and because spatial synchrony may elevate a risk of extinction and may lead to other environmental impacts. Conditions for stable synchronization in a system of linearly coupled predator-prey oscillators have been considered in the past. However, the spatial dispersal coupling may be relatively weak and may not necessarily lead to a stable, complete synchrony.

View Article and Find Full Text PDF

Autism spectrum disorder is increasingly understood to be based on atypical signal transfer among multiple interconnected networks in the brain. Relative temporal patterns of neural activity have been shown to underlie both the altered neurophysiology and the altered behaviors in a variety of neurogenic disorders. We assessed brain network dynamics variability in autism spectrum disorders (ASD) using measures of synchronization (phase-locking) strength, and timing of synchronization and desynchronization of neural activity (desynchronization ratio) across frequency bands of resting-state electroencephalography (EEG).

View Article and Find Full Text PDF

Neural synchronization is believed to play an important role in different brain functions. Synchrony in cortical and subcortical circuits is frequently variable in time and not perfect. Few long intervals of desynchronized dynamics may be functionally different from many short desynchronized intervals although the average synchrony may be the same.

View Article and Find Full Text PDF

Conventional deep brain stimulation of basal ganglia uses high-frequency regular electrical pulses to treat Parkinsonian motor symptoms but has a series of limitations. Relatively new and not yet clinically tested, optogenetic stimulation is an effective experimental stimulation technique to affect pathological network dynamics. We compared the effects of electrical and optogenetic stimulation of the basal gangliaon the pathologicalParkinsonian rhythmic neural activity.

View Article and Find Full Text PDF

Hypokinetic symptoms of Parkinson's disease are usually associated with excessively strong oscillations and synchrony in the beta frequency band. The origin of this synchronized oscillatory dynamics is being debated. Cortical circuits may be a critical source of excessive beta in Parkinson's disease.

View Article and Find Full Text PDF
Article Synopsis
  • The text includes a collection of research topics related to neural circuits, mental disorders, and computational models in neuroscience.
  • It features various studies examining the functional advantages of neural heterogeneity, propagation waves in the visual cortex, and dendritic mechanisms crucial for precise neuronal functioning.
  • The research covers a range of applications, from understanding complex brain rhythms to modeling auditory processing and investigating the effects of neural regulation on behavior.
View Article and Find Full Text PDF

Parkinson's disease pathophysiology is marked by increased oscillatory and synchronous activity in the beta frequency band in cortical and basal ganglia circuits. This study explores the functional connections between synchronized dynamics of cortical areas and synchronized dynamics of subcortical areas in Parkinson's disease. We simultaneously recorded neuronal units (spikes) and local field potentials (LFP) from subthalamic nucleus (STN) and electroencephalograms (EEGs) from the scalp in parkinsonian patients, and analysed the correlation between the time courses of the spike-LFP synchronization and inter-electrode EEG synchronization.

View Article and Find Full Text PDF

Cardiac and respiratory rhythms are known to exhibit a modest degree of phase synchronization, which is affected by age, diseases, and other factors. We study the fine temporal structure of this synchrony in healthy young, healthy elderly, and elderly subjects with coronary artery disease. We employ novel time-series analysis to explore how phases of oscillations go in and out of the phase-locked state at each cycle of oscillations.

View Article and Find Full Text PDF

Basal ganglia dysfunction has being implied in both Parkinson's disease and dystonia. While these disorders probably involve different cellular and circuit pathologies within and beyond basal ganglia, there may be some shared neurophysiological pathways. For example, pallidotomy and pallidal Deep Brain Stimulation (DBS) are used in symptomatic treatment of both disorders.

View Article and Find Full Text PDF

Repeated drug use evokes a number of persistent alterations in oscillatory power and synchrony. How synchronous activity in cortico-hippocampal circuits is progressively modified with repeated drug exposure, however, remains to be characterized. Drugs of abuse induce both short-term and long-term adaptations in cortical and hippocampal circuits and these changes are likely important for the expression of the altered behavioral and neurobiological phenotype associated with addiction.

View Article and Find Full Text PDF

Neural synchrony exhibits temporal variability and, therefore, the temporal patterns of synchronization and desynchronization may have functional relevance. This study employs novel time-series analysis to explore how neural signals become transiently phase locked and unlocked in the theta frequency band in prefrontal cortex and hippocampus of awake, behaving rats during repeated injections of the psychostimulant, d-Amphetamine (AMPH). Short (but frequent) desynchronized events dominate synchronized dynamics in each of the animals we examined.

View Article and Find Full Text PDF

Neural synchronization is believed to be critical for many brain functions. It frequently exhibits temporal variability, but it is not known if this variability has a specific temporal patterning. This study explores these synchronization/desynchronization patterns.

View Article and Find Full Text PDF

Suppression of excessively synchronous beta-band oscillatory activity in the brain is believed to suppress hypokinetic motor symptoms of Parkinson's disease. Recently, a lot of interest has been devoted to desynchronizing delayed feedback deep brain stimulation (DBS). This type of synchrony control was shown to destabilize the synchronized state in networks of simple model oscillators as well as in networks of coupled model neurons.

View Article and Find Full Text PDF

Neural activity in the brain of parkinsonian patients is characterized by the intermittently synchronized oscillatory dynamics. This imperfect synchronization, observed in the beta frequency band, is believed to be related to the hypokinetic motor symptoms of the disorder. Our study explores potential mechanisms behind this intermittent synchrony.

View Article and Find Full Text PDF

The exact origin of tremor in Parkinson's disease remains unknown. We explain why the existing data converge on the basal ganglia-thalamo-cortical loop as a tremor generator and consider a conductance-based model of subthalamo-pallidal circuits embedded into a simplified representation of the basal ganglia-thalamo-cortical circuit to investigate the dynamics of this loop. We show how variation of the strength of dopamine-modulated connections in the basal ganglia-thalamo-cortical loop (representing the decreasing dopamine level in Parkinson's disease) leads to the occurrence of tremor-like burst firing.

View Article and Find Full Text PDF

Motor symptoms of Parkinson's disease are related to the excessive synchronized oscillatory activity in the beta frequency band (around 20Hz) in the basal ganglia and other parts of the brain. This review explores the dynamics and potential mechanisms of these oscillations employing ideas and methods from nonlinear dynamics. We present extensive experimental documentation of the relevance of synchronized oscillations to motor behavior in Parkinson's disease, and we discuss the intermittent character of this synchronization.

View Article and Find Full Text PDF

Synchronized oscillations in networks of inhibitory and excitatory coupled bursting neurons are common in a variety of neural systems from central pattern generators to human brain circuits. One example of the latter is the subcortical network of the basal ganglia, formed by excitatory and inhibitory bursters of the subthalamic nucleus and globus pallidus, involved in motor control and affected in Parkinson's disease. Recent experiments have demonstrated the intermittent nature of the phase-locking of neural activity in this network.

View Article and Find Full Text PDF