Publications by authors named "Leonid Golovan"

Chalcogenide vitreous semiconductors (ChVSs) find application in rewritable optical memory storage and optically switchable infrared photonic devices due to the possibility of fast and reversible phase transitions, as well as high refractive index and transmission in the near- and mid-infrared spectral range. Formed on such materials, laser-induced periodic surface structures (LIPSSs), open wide prospects for increasing information storage capacity and create polarization-sensitive optical elements of infrared photonics. In the present work, a possibility to produce LIPSSs under femtosecond laser irradiation (pulse duration 300 fs, wavelength 515 nm, repetition rate up to 2 kHz, pulse energy ranged 0.

View Article and Find Full Text PDF

Femtosecond laser-modified amorphous silicon (a-Si) films with optical and electrical anisotropy have perspective polarization-sensitive applications in optics, photovoltaics, and sensors. We demonstrate the formation of one-dimensional femtosecond laser-induced periodic surface structures (LIPSS) on the surface of phosphorus- (n-a-Si) and boron-doped (p-a-Si) amorphous silicon films. The LIPSS are orthogonal to the laser polarization, and their period decreases from 1.

View Article and Find Full Text PDF

GeSbTe (GST225) looks to be a promising material for rewritable memory devices due to its relatively easy processing and high optical and electrophysical contrast for the crystalline and amorphous phases. In the present work, we combined the possibilities of crystallization and anisotropic structures fabrication using femtosecond laser treatment at the 1250 nm wavelength of 200 nm thin amorphous GST225 films on silicon oxide/silicon substrates. A raster treatment mode and photoexcited surface plasmon polariton generation allowed us to produce mutually orthogonal periodic structures, such as scanline tracks (the period is 120 ± 10 μm) and laser-induced gratings (the period is 1100 ± 50 nm), respectively.

View Article and Find Full Text PDF

Embedding quantum dots (QDs) into an organic matrix of controllable order requires the identification of their structural characteristics. This analysis is necessary for the creation of anisotropic composites that are sensitive to external stimuli. We have studied the QD structures formed during the single-step synthesis of CdSe/ZnS QDs and their transformations after the initial ligand's substitution for another ligand.

View Article and Find Full Text PDF

In this Letter, we report on the circular anisotropy of third-harmonic (TH) generation in an array of silicon nanowires (SiNWs) of approximately 100 nm in diameter tilted to the crystalline silicon substrate at an angle of 45°. Numerical simulations of the scattering at the fundamental and TH frequencies of circularly polarized light by a single SiNW and an ansatz structure composed of 13 SiNWs used as a geometrical approximation of the real SiNW array indicate asymmetric scattering diagrams, which is a manifestation of the photonic spin Hall effect mediated by the synthetic gauge field arising due to the special guided-like mode structure in each SiNW. Despite strong light scattering in the SiNW array, the experimentally measured TH signal demonstrated significant dependence on the polarization state of incident radiation and the SiNW array spacial orientation in regard to the wave vector direction.

View Article and Find Full Text PDF

One-dimensional periodic surface structures were formed by femtosecond laser irradiation of amorphous hydrogenated silicon (a-Si:H) films. The a-Si:H laser processing conditions influence on the periodic relief formation as well as correlation of irradiated surfaces structural properties with their electrophysical properties were investigated. The surface structures with the period of 0.

View Article and Find Full Text PDF
Article Synopsis
  • Modern optical bioimaging trends seek innovative nanoproducts that offer both high image contrast and effective treatment capabilities.
  • Silicon nanoparticles, created through picosecond laser ablation of porous silicon films and nanowire arrays in water and ethanol, show promise as contrasting agents for imaging techniques like fluorescence and optical coherence tomography.
  • These nanoparticles, measuring under 100 nm and exhibiting crystalline phases, demonstrate effective fluorescence and light scattering, paving the way for their application in biophotonics, as evidenced by preliminary optical imaging experiments.
View Article and Find Full Text PDF

The photoluminescence (PL) of CdSe quantum dots (QDs) that form stable nanocomposites with polymer liquid crystals (LCs) as smectic C hydrogen-bonded homopolymers from a family of poly[4-(n-acryloyloxyalkyloxy)benzoic acids] is reported. The matrix that results from the combination of these units with methoxyphenyl benzoate and cholesterol-containing units has a cholesteric structure. The exciton PL band of QDs in the smectic matrix is redshifted with respect to QDs in solution, whereas a blueshift is observed with the cholesteric matrix.

View Article and Find Full Text PDF

Random lasers are a developing class of light sources that utilize a highly disordered gain medium as opposed to a conventional optical cavity. Although traditional random lasers often have a relatively broad emission spectrum, a random laser that utilizes vibration transitions via Raman scattering allows for an extremely narrow bandwidth, on the order of 10 cm(-1). Here we demonstrate the first experimental evidence of lasing via a Raman interaction in a bulk three-dimensional random medium, with conversion efficiencies on the order of a few percent.

View Article and Find Full Text PDF

We study the structure and optical properties of arrays of silicon nanowires (SiNWs) with a mean diameter of approximately 100 nm and length of about 1-25 μm formed on crystalline silicon (c-Si) substrates by using metal-assisted chemical etching in hydrofluoric acid solutions. In the middle infrared spectral region, the reflectance and transmittance of the formed SiNW arrays can be described in the framework of an effective medium with the effective refractive index of about 1.3 (porosity, approximately 75%), while a strong light scattering for wavelength of 0.

View Article and Find Full Text PDF

Anisotropic photonic crystal structures consisting of birefringent porous silicon layers with alternating porosity were fabricated. The in-plane birefringence formed as a result of anisotropic etching in Si(110) results in unique multilayered structures with two distinct photonic bandgaps for orthogonal light polarizations. Nonlinear optical studies based on the third-harmonic generation from these structures demonstrate variation in the symmetry of the nonlinear optical response.

View Article and Find Full Text PDF